
Incrementally Updateable Honey Password Vaults

Haibo Cheng1, Wenting Li1, Ping Wang1, Chao-Hsien Chu2, Kaitai Liang3

1Peking University 2Pennsylvania State University 3Delft University of Technology

Abstract
Password vault applications allow a user to store multiple
passwords in a vault and choose a master password to encrypt
the vault. In practice, attackers may steal the storage file of the
vault and further compromise all stored passwords by offline
guessing the master password. Honey vaults have been pro-
posed to address the threat. By producing plausible-looking
decoy vaults for wrong master passwords, honey vaults force
attackers to shift offline guessing to online verifications.

However, the existing honey vault schemes all suffer from
intersection attacks in the multi-leakage case where an old
version of the storage file (e.g., a backup) is stolen along
with the current version. The attacker can offline identify
the decoys and completely break the schemes. We design a
generic construction based on a multi-similar-password model
and further propose an incremental update mechanism. With
our mechanism, the attacker cannot get any extra advantages
from the old storage, and therefore degenerates to an attacker
only with knowledge of the current version.

To further evaluate the security in the traditional single-
leakage case where only the current version is stolen, we
investigate the theoretically optimal strategy for online verifi-
cations, and propose practical attacks. Targeting the existing
schemes, our attacks crack 33%–55% of real vaults via only
one-time online guess and achieve 85%–94% accuracy in
distinguishing real vaults from decoys. In contrast, our de-
sign reduces the values of the two metrics to 2% and 58%
(close to the ideal values 0% and 50%), respectively. This in-
dicates that the attackers needs to carry out 2.8x–7.5x online
verifications to break our scheme. Since online verifications
can be quickly detected and prevented, our design achieves a
significant improvement on security.

1 Introduction

Password vaults, a.k.a wallets or managers, are highly recom-
mended for password management. A user can store multiple
passwords in a vault and further set a master password to en-

Real vault
(123456, 123456a, …) 3Stolen

ciphertext Failures or random junk
� � Ҧ� ˚▶Ϡϑ� Ψ� Ǐ…
Фб� ЈӇ•˚₦ҠΨ� ▶…
……

7

Decrypt with
(offline)

Correct key

Incorrect keys

Offline judge

Offline judge

(a) Password vaults encrypted by traditional PBE
Real vault
(123456, 123456a, …) 3Stolen

ciphertext Decoy vaults
(qawsedrf, 1q2w3e4r, …)
(letmein, *letmein, …)
……

7

Decrypt with
(offline)

Correct key

Incorrect keys

Online verify

Online verify

(b) Honey password vaults

Figure 1: The difference between traditional and honey pass-
word vaults in the view of attackers.

crypt the vault. The user thus only needs to remember the mas-
ter password instead of a long list of daily-use passwords. In
practice, the user usually uses the vault among multiple clients
(e.g., smartphone or PC), and requires its synchronization via
online services. The synchronization may be provided by the
vault applications (e.g., LastPass and 1Password) or third-
party file sync services (e.g., Dropbox and iCloud). However,
the sync services may suffer from leakage [27, 32, 44, 45, 48],
which leads to a great threat for password vaults.

If an attacker steals the storage file of a vault (including the
ciphertext), the attacker can launch guessing attacks against
the master password to compromise all stored passwords. For
a vault encrypted by traditional password-based encryption
(PBE), decrypting it with an incorrect guess will yield a failure
(i.e., ⊥) or random junk. So the attacker can immediately
identify the validity of guesses offline. In addition, since the
master password is human-memorable, it may be low-entropy
[11, 53] and could be guessed as easily as a website login
password [36,51,52]. Accordingly, the attacker can efficiently
carry out this offline attack with a high probability of success.

Honey password vault [9] is proposed to address this threat.
Its core idea is to generate plausible-looking decoy vaults for
incorrect guesses to confuse attackers. As shown in Fig. 1,
launching offline guessing produces many decoy vaults (with

1

mailto:hbcheng@pku.edu.cn
mailto:wentingli@pku.edu.cn
mailto:pwang@pku.edu.cn
mailto:chu@ist.psu.edu
mailto:Kaitai.Liang@tudelft.nl

a real one), which need to be online verified (i.e., trying to
log in with passwords in the vaults). By pushing attackers to
online verification, the honey vault mechanism significantly
enhances the security of vaults, as the verification can be
practically detected and prevented [17, 21, 42].

The design of decoy vaults originates from Bojinov et
al. [9]. Their proposed Kamouflage pre-generates a static
amount (e.g., 1,000) of decoy vaults with corresponding de-
coy master passwords, and further stores them with the real
ones. Later, Chatterjee et al. [13] introduced a honey vault
scheme NoCrack based on Honey Encryption (HE) [23]. HE
is used to turn a vault to a random-looking bit string called
seed with a probabilistic encoder—distribution transforming
encoder—and further encrypt the seed. Due to the “honey”
feature provided by HE, using an arbitrary wrong master
password in decryption can yield a random-looking seed that
will be further decoded to a decoy vault on the fly. This brings
attackers much more difficulties to tell the real vault, com-
pared with the pre-generating method. Subsequently, Golla et
al. [18] proposed adaptive encoders which adjust themselves
according to the encrypted vault to make decoys more similar
to it. Cheng et al. [14] found both Chatterjee et al.’s [13] and
Golla et al.’s [18] encoders suffer from encoding attacks. They
further proposed a generic transformation that can convert a
probability model to an encoder resisting encoding attacks.

However, all existing honey vault schemes suffer from inter-
section attacks in the multi-leakage case where an old version
of the storage file is stolen along with the current version.
This is an open question left in [13,18]. More specifically, the
schemes only provide full update for a vault, i.e., reprocess-
ing the updated vault as a brand new one, even if a user just
changes a password (or add a new one). This yields a totally
different new version for each decoy vault (by decrypting the
new ciphertext with the same master password); and mean-
while the old and new versions of the real vault are the same
except for the changed password. Hence, the attacker can
offline identify the real vault, according to the similarity be-
tween the new and old versions of the vaults. This is a realistic
threat because: 1) the old version of the storage file usually is
backed up and stored with the current version by the online ser-
vices or applications, (for example, Dropbox keeps all history
versions of files for 30 days [16], and 1Password automatically
creates a backup for each change [7]); 2) the online storage
may suffer from multiple leakages due to increasing number
of network attacks and software bugs [6, 20, 26, 34, 44–46].

1.1 Our Contributions

To resist intersection attacks, we propose a generic construc-
tion and an incremental update mechanism for HE-based
honey vaults. We build our construction from: 1) a multi-
similar-password model which models the conditional pass-
word distribution given multiple old passwords (i.e., the old
vault); and 2) the corresponding conditional encoder which

can encode a password given multiple old ones. With the
construction, we can encode the changed (or added) password
to a (sub) seed and pad it to the tail of the vault seed. With a
prefix-keeping PBE scheme, the similarity between the old
and new versions of each decoy vault is kept the same as that
for the real vault. Therefore, our scheme resists intersection
attacks. Formally, the attacker cannot get any extra advantages
from the old storage file, and degenerates to an attacker in the
single-leakage case (where only the current version is stolen).

To further evaluate the security of (HE-based) honey vault
schemes against distinguishing attacks in the single-leakage
case, we formally investigate the optimal strategy for online
verifications and further propose several practical attacks1.
For the existing schemes [13, 14, 18], our attacks crack 33%–
55% of real vaults via only one-time online guess and achieve
85%–94% accuracy in distinguishing real vaults from decoys.
We further find that the adaptive encoder proposed by Golla
et al. [18] does leak extra information about the real vault.
This makes it more insecure than its static variant. Leveraging
the leaked information, our attacks can achieve 91%–93%
distinguishing accuracy against the adaptive encoder, which
is 6.2%–9.0% higher than that of the static variant.

To instantiate our construction, we design a multi-similar-
password model according to users’ password-generating
habits. The design is built on the top of a single-password
model (capturing how the user creates a brand new password),
a single-similar-password model (capturing how a user cre-
ates a new password by reusing an old one) and an unreused
probability function. For our design, the existing and our
proposed attacks only crack at most 2% of real vaults via one-
time online guess and achieve at most 58% distinguishing
accuracy. The results are close to 0% and 50% maintained
by an ideal secure scheme, respectively. This also means the
attacker has to carry out 2.8x–7.5x online verifications against
our scheme as compared to others. Since online verifications
can be quickly detected and prevented [17,21,42], our design
achieves a significant improvement on security.

In summary, we describe our main contributions as follows.
1. We propose a new generic construction and an incre-

mental update mechanism for HE-based honey vault
schemes, which resists intersection attacks.

2. We formally investigate the optimal strategy for online
verifications and further propose several practical attacks,
which can effectively distinguish real and decoy vaults
for the existing honey vault schemes.

3. We instantiate our construction with a well-designed
multi-similar-password model, which can generate more
plausible-looking decoys.

1Here, we only focus on human-generated passwords. Although many
vault applications recommend users to use randomly-generated passwords,
they always store some human-generated passwords in the vaults [35, 40]
(note these passwords may inherit from the old password management meth-
ods or be used for the convenience of manual entry on gaming consoles).
For these passwords, it is of great challenge to generate indistinguishable
decoys [13] (it is trivial for randomly-generated ones).

2

2 Background and Related Work

2.1 Traditional Solutions to Offline Guessing

A straightforward solution to master password guessing is
to leverage a special password hashing as the key derivation
function (KDF) used in password-based encryption (PBE),
such as an iterated hash function [25, 43], a memory-hard
function [10, 41]. LastPass employs this solution (using the
100,100 rounds of PBKDF2-SHA256 [4]) to increase the
computational cost of attackers in launching master pass-
word guess. Nevertheless, the cost of a valid user is also in-
creased by the same factor. Without leveraging heavy hashing,
one may use an extra key stored on a device (e.g., iOS key-
chain [5], a server [29]), to enhance the master password to a
cryptographic key for further encryption, like 1Password [5].
But this has a defect that if the device gets lost without any
backup, all the passwords stored in the vault cannot be recov-
ered anymore. Note that these solutions can be used in honey
vault schemes to achieve complementary protection. There
may be other approaches but we don’t explore them here. We
will only focus on the solutions based on honey vaults.

2.2 Honey Encryption

Honey Encryption (HE) [23], proposed by Juels and Risten-
part, can resist the brute-force attack by yielding plausible-
looking messages for arbitrary incorrect keys, even in the
case where a low-entropy key (e.g., password) is used. Later,
Jaeger et al. [22] proved that HE satisfies the stronger notions
of target-distribution semantic security and target-distribution
non-malleability. The core design of HE relies on an encoder,
called distribution transforming encoder (DTE), being able
to capture the message distribution. Intaking a message M
following some distribution M , DTE can encode it to a bit
string S called seed which is indistinguishable from a random
string. HE further encrypts S to a ciphertext C by a traditional
but carefully-chosen PBE scheme with a key K. Decrypting C
with a wrong key K′ (e.g., a guessing key from attackers), the
carefully-chosen PBE (e.g., the CTR-mode AES with PBKDF
used in [13, 18, 23]) can yield a random-looking bit string S′.
DTE then decodes S′ into a honey message M′ which is sam-
pled from the same distribution M . Note in the context of
honey vault, the message and key correspond to the password
vault and master password, respectively.

Juels and Ristenpart use inverse sampling to convert a dis-
tribution to an encoder called IS-DTE. This method performs
well for simple distributions, e.g., uniform distributions. But
when handling messages (e.g., natural language) with a huge
space size and a complex distribution, it definitely yields ex-
plosive complexity in time and storage space. To tackle this
problem, Chatterjee et al. [13] introduce a natural language
encoder, and later Cheng et al. [14] propose a probability
model transforming encoder (see Sections 2.3 and 2.4).

Table 1: The storage format of honey vaults

Plaintext
part

Domain Facebook Myspace 000Webhost Twitter . . .
Username Aaron Aaron1 AaronJ Aaron . . .
Randomly-generated No No Yes No . . .
Password position 1 3 1 2 . . .

Ciphertext
part

Human-generated (123456, 123456a, 1234567, . . .)
Randomly-generated (cYp97@v84G$9GNv̂s%3R, . . .)

Note: Each randomly-generated password is encoded by the encoder for the
uniform distribution and further encrypted separately. All human-generated
passwords are encoded by the encoder for the vault model and further en-
crypted as a whole.

2.3 HE-based Honey Vault Schemes

Unlike traditional solutions to offline master password guess-
ing, honey vault schemes yield decoy vaults for incorrect
guesses and therefore force attackers to online verify these
decoy vaults. We only focus on HE-based schemes [13,14,18]
in this paper due to their advantage on security.

Storage format. The existing schemes only use HE to en-
crypt passwords and leave other parts (e.g., domains and user-
names) in plaintext2. We give an example in Table 1 to show
the storage format.

Vault model. The probability model for password vaults
(vault model, for short) is the foundation used to generate
indistinguishable decoys. It should characterize the real vault
distribution as precisely as possible. Because of users’ various
password generation (and reuse) habits, it is a great challenge
to design models for human-generated passwords (note it
is trivial for randomly-generated passwords [13] and so we
do not consider them in this paper). The existing vault mod-
els [13, 18] choose a single-password model as the base to
characterize the single-password distribution and further ex-
tend it to capture the similarity (reuse habits) among multiple
passwords in a vault.

Chatterjee et al. [13] use the probabilistic context-free
grammar (PCFG) model and extend it by the sub-grammar
approach. PCFG is first used by Weir et al. [52] (Weir-PCFG)
in password cracking, and its basic idea is to capture the gen-
eration of password under several predefined rules. Chatterjee
et al. [13] enrich the PCFG with more password generation

2One may choose to further encrypt domains and usernames. However,
this may easily break the “honey” property of HE. Note that a real username
is registered on the domain, but its decoy is not. Thus, using a decoy username
on registration will always lead to a success (since the website will regard
it as a “new” registration). This attack is hard to prevent, and may threaten
the security of honey vault. Without using encryption, Chatterjee et al. [13]
provide another way to hide domains. They generate decoy accounts for
the domains where users have not registered, and further store the decoy
usernames in plaintext. But attackers still can check these decoy accounts by
verifying the usernames via the aforementioned registration tactic. It seems
that there does not exist an effective domain-hiding solution in the context of
honey vault. And providing the solution is beyond the scope of this paper.

3

rules and yield the Chatterjee-PCFG. Based on Chatterjee-
PCFG, they define the sub-grammar approach that captures
the generation of a vault (consisting of multiple passwords)
under a small rule set. Since the rule set is relatively small
(indicating that the methods of password generation are lim-
ited), passwords may share the same rules, which easily yields
“password similarity”.

Golla et al. [18] find that decoy vaults generated by Chat-
terjee et al.’s model [13] can be distinguished. To design
a more secure vault model, they choose 3rd-order Markov
model (denoted as Golla-Markov) and extend it by the reuse-
rate approach. Markov model [36] is another widely used
single-password model, capturing the generation of a pass-
word character by character. Based on Golla-Markov, the
reuse-rate approach is designed to capture the generation of a
vault with a simplification that a user has one single password
and reuses it for different accounts by modifying its last i
characters (0 ≤ i ≤ 5). They assume that the reuse rate (for
each i) follows a Gaussian distribution for quantification.

In addition, Golla et al. introduce and apply adaptive con-
cept to vault model, encoder and honey vault scheme. Be-
fore encrypting a real vault V , an adaptive scheme adjusts
its vault model (as well as its encoder) according to V . With
well-designed adjustments, an adaptive model may produce
decoys that are more similar to V , and bring more difficulties
to attackers in identifying them. Following the concept, Golla
et al. [18] further present an adaptive Markov model. This
model directly increases the probabilities of n-grams appeared
in the real vault.

Note that Cheng et al. [14] do not propose a new vault
model but leverage/recommend Golla et al.’s design.

Encoder. An encoder for a vault model should encode a
vault sampled from the model to a seed being indistinguish-
able from a random bit string. However, the natural language
encoders designed by Chatterjee et al. [13] and used by Golla
et al. [18] fail to achieve this requirement, and therefore suf-
fer from encoding attacks [14]. Cheng et al. [14] tackle this
vulnerability by employing their encoders for the old models.
To evaluate the existing honey vault schemes without the neg-
ative effect caused by encoding attacks, we will adopt Cheng
et al.’s encoders to [13] and [18] in this paper, and still refer to
the resulting schemes as Chatterjee et al.’s and Golla et al.’s.
Under our adoption, Golla et al.’s scheme (with Cheng et al.’s
encoder) becomes the same as Cheng et al.’s scheme (with
Golla et al.’s model as they recommended).

Deployment consideration. Due to the special feature of
honey vaults, if a user enters an incorrect master password
(e.g., a typo), it will get a decoy vault and further lead to a
login failure. Dynamic security skin can be used to address
the issue as suggested in [9, 13]. This approach shows a pic-
ture to the user according to the master password input. By
checking if the picture is identical to the one from the last

(correct) input, the user can verify the correctness of the mas-
ter password. Unlike the ciphertext, the picture is not stored
by the application, and thus will not be stolen from the online
storage. Note the user does not need to remember the whole
picture but just a vague impression. Other typo-correcting
methods (e.g., [12]) can also be used in deployment without
putting an extra burden on users.

2.4 Model-to-encoder transformation

Cheng et al. [14] propose a generic method to transform an ar-
bitrary probability model to a probability model transforming
encoder, which resists encoding attacks. Their core idea is to
assume that messages are created by generating paths (i.e., a
sequence of generating rules). Based on the idea, they formal-
ize all current models for the single password or password
vault. For example, in their formalization for PCFG models,
the generating rules are production rules and the generating
paths are leftmost derivations. To further encode a message,
their encoder parses all generating paths of the message, ran-
domly selects one path with its probability, and encodes each
rule in the path. (In contrast, the existing encoders in [13, 18]
use deterministic path selection, therefore it is easy to ex-
clude the decoy seeds of which paths are not the deterministic
ones.) In this way, each seed of this message can be randomly
and uniformly picked. This feature is called seed uniformity,
which is the “cure” to encoding attacks.

However, in some models associated with great ambiguity,
a message may be generated by various paths. Parsing all
these paths may yield heavy time complexity in encoding.
Although Cheng et al. attempted to reduce the ambiguity by
pruning some unnecessary paths, the low encoding perfor-
mance still limits the scalability of their encoders.

3 Our Incrementally Updateable Scheme

We propose a generic construction for vault models and fur-
ther construct an encoder, which provides incremental update
for password vaults and achieves the update security (i.e., re-
sisting intersection attacks). We summarize the main notions
of this section in Table 2.

3.1 Our New Construction

In practice, the passwords in a vault V = (pwi)
n
i=1 are gener-

ated one by one. Therefore, the probability Prreal(V) can be
expanded as

Prreal(V) =
n−1

∏
i=0

Prreal(pwi+1 | pw1, pw2, . . . , pwi), (1)

where Prreal(pwi+1 | (pwi′)
i
i′=1) is the probability of creat-

ing a new password pwi+1 under the condition of given i

4

Table 2: Our proposed models and encoders

Probability model Description
Password vault
model PrPVM

PrPVM(V) estimates the probability Prreal(V) that a
user generates V (as a real vault).

Multi-similar-
password model
PrMSPM

PrMSPM(pwi+1 | pw1, pw2, . . . , pwi) estimates the
probability Prreal(pwi+1 | pw1, pw2, . . . , pwi) that a
user generates a new password pwi+1 with i
existing/old passwords (pwi′)

i
i′=1.

Single-similar-
password model
PrSSPM

PrSSPM(pw′ | pw) estimates the probability that a user
generates a new password pw′ by reusing/modifying
an old password pw.

Single-password
model PrSPM

PrSPM(pw) estimates the probability that a user
generates a brand new password pw (without reusing
old passwords).

Unreused probability
function f

f (i) estimates the probability that the (user’s) i+1-th
password is not reused from the first i passwords.

Encoder Description
For password vault
model encode(V) encodes the vault V .

For multi-similar-
password model

encode(pwi+1 | pw1, pw2, . . . , pwi) encodes a new
password pwi+1 given i existing/old passwords
(pwi′)

i
i′=1.

old passwords (pwi′)
i
i′=1. Naturally, we can leverage a con-

ditional probability model PrMSPM(·|·) to estimate the con-
ditional probability and further construct a vault model. We
denote PrMSPM(·|·) as multi-similar password model.

3.2 Conditional Probability Model Transform-
ing Encoder

For a probability model with the following construction

Prmodel((Mi)
n
i=1) =

n

∏
i=1

Prmodel(Mi | (Mi′)
i−1
i′=1), (2)

using Cheng et al.’s model-to-encoder transformation can
yield a probability model transforming encoder. However,
the encoder has exponential time complexity if the model is
ambiguous. Specifically, if there exit ki paths to generate Mi
from (Mi′)

i−1
i′=1, then there will be ∏

n
i=1 ki generating paths

for M = (Mi)
n
i=1. Cheng et al.’s encoder has to calculate the

probabilities of ∏
n
i=1 ki paths and randomly select one with

its probability, which yields the time complexity O(∏n
i=1 ki).

To reduce the time complexity of the encoder, we extend
Cheng et al.’s [14] transformation for conditional probability
models. Since a conditional probability model can be seen as a
probability model for each condition, a conditional probability
model transforming encoder (conditional encoder for short)
can be achieved by transforming the conditional probability
model for each condition with Cheng et al.’s transformation.

By using the conditional encoder (encode(·|·),decode(·|·))
for Prmodel(·|·), we design a new encoder for Prmodel(·) as
follows:

1. To encode a message M = (Mi)
n
i=1: encode Mi to a seed

Si by encode(Mi | (Mi′)
i−1
i′=1), then output the concatenat-

ing of {Si}n
i=1, i.e., S = S1||S2|| . . . ||Sn.

2. To decode a seed S: split S to {Si}n
i=1 according to

the fixed length of Si, decode Mi from Si in order by
decode(Si | (Mi′)

i−1
i′=1), then output M = (Mi)

n
i=1.

In contrast to Cheng et al.’s encoder, our new encoder com-
bined by conditional encoder only needs to select one path
from ki paths for 1 ≤ i ≤ n, which significantly reduces the
time complexity to O(∑n

i=1 ki). In addition, since the condi-
tional encoder is seed-uniform, our new encoder naturally
inherits this property and therefore resists encoding attacks.

3.3 Incrementally Updateable Encoder

The proposed conditional encoder for the multi-similar-
password model can encode a vault password by password3.
This naturally brings an incremental update mechanism. In
detail, we update the storage file of a vault as follows:

1. To add a new password: decrypt the vault, encode the
new password by the conditional encoder for the multi-
similar-password model, add the password seed to the
tail of the vault seed, record the password position in
plaintext, and finally encrypt the updated seed with the
same (correct) key and the same nonce.

2. To delete an old password: mark the password as deleted
(in plaintext) without changing the ciphertext.

3. To change an old password: delete the old password, add
the new password as in Item 1, and update the password
position for the corresponding account.

To achieve the update security, the PBE adopted in HE
must satisfy the prefix-keeping property:

1. If a string str1 is a prefix of a string str2, then the cipher-
text C1 of str1 is also a prefix of the ciphertext C2 of str2
with the same key and the same random nonce. Note the
nonce is stored in plaintext, e.g., the salt for PBKDF and
the initialization vector for CTR-mode.

2. If a ciphertext C1 is a prefix of a ciphertext C2 (with the
same nonce), then the plaintext str1 of C1 is a prefix of
the plaintext str2 of C2 under any (incorrect) key.

The PBE scheme used in [13, 14, 18], i.e., AES in CTR-
mode merged with PBKDF, satisfies the prefix-keeping prop-
erty. Thus, we use the same scheme for our design.

Intersection-attack resistance. Compared with the full up-
date in the current honey vault schemes, our design decreases
the time complexity in updating but also guarantees the up-
date security against intersection attacks. As shown in Table
3, owing to the prefix-keeping property that our chosen PBE
provides, we ensure that the old ciphertext is a prefix of its
new version. Decrypting the old and new ciphertexts with the
same (incorrect) master password, we will have that the new
seed is the same as its old version except for the added tail
(note if one leverages the schemes with full update, these two

3When initializing a vault with a set of existing passwords, the application
can shuffle the passwords and then encode them one by one.

5

Table 3: The difference between old and new vaults after
changing Facebook password1

Position2 Ciphertext Seed3 Passwords3

Previous 1 C1∥. . .∥C10 S1∥. . .∥S10 pw1,. . ., pw10
Updated 11 C1∥. . .∥C10∥C11 S1∥. . .∥S10∥S11 pw1,. . ., pw10, pw11

1 We take the vault in Table 1 as an example and assume it contains 10
(human-generated) passwords.

2 By position we refer to the password position of Facebook account.
3 The previous and updated seeds/passwords are under a master password

which may be the correct one or an incorrect one.

seeds will be totally different). Accordingly, the new decoy
vault is identical to its old version except for the changed or
added passwords. This means that the similarity of the old
and new versions for each decoy vault is kept the same as
that for the real vault. Therefore, if an attacker steals the old
version of the vault storage file along with the current version,
the attacker cannot get extra advantages and degenerates to
an attacker only with the knowledge of the current version.
This means the attacker cannot launch intersection attacks but
only (traditional) distinguishing attacks based on the current
version. We confirm this statement in an experiment with
real-world datasets (see Appendix D).

Other potential threats. Unlike the existing schemes,
our scheme maintains the password history (including the
changed and deleted passwords), which may bring an ad-
vantage in distinguishing attacks. Based on users’ password-
changing habits, the attacker may leverage similarity among
the old and new passwords for distinguishing. (Note the
password-similarity attack proposed in Section 4 can be nat-
urally extended for this purpose.) To address this issue, we
can leverage a well-designed multi-similar-password model
to capture the password-changing habits and further generate
plausible-looking password histories for decoys. In addition,
keeping the password history is provided by many real-world
vault applications as a feature (rather than a flaw), e.g., Last-
Pass [3]. Our scheme naturally provides this feature, while
the existing ones cannot.

3.4 Multi-Similar-Password Model

To instantiate our construction for honey vault scheme, we
need a multi-similar-password model PrMSPM which can pre-
cisely estimate Prreal(pwi+1 | (pwi′)

i
i′=1). To the best of our

knowledge, such models do not exist in the literature. Pal
et al. [38] mention this notion in their work on password
guessing, but they leave it as future work without providing a
specific model. Here, we give a simple design for the model.

Our design. We model a user’s generation of a new pass-
word pwi+1 with i old passwords (pwi′)

i
i′=1 by a simplifica-

tion that pwi+1 either is created by “reusing” an old password

1

0.02455 i3-0.2945 i2+3.409 i+0.0852

 Real Data

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

U
nr
eu
se
d
pr
ob
ab
ili
ty

Figure 2: Unreused probability f (i) that the i+1-th password
is not reused from the first i passwords.

(including a direct reuse or a slight modification of it) or is a
brand new creation. Accordingly,

PrMSPM(pwi+1 | pw1, pw2, . . . , pwi) (3)

= f (i)PrSPM(pwi+1)+
1− f (i)

i

i

∑
i′=1

PrSSPM(pwi+1 | pwi′),

where PrSSPM, PrSPM and f (i) represent a single-similar-
password model, a single-password model, and the unreused
probability function, respectively. The single-password model
captures the new generation, the single-similar-password
model captures the reusing, and the unreused probability func-
tion is the probability that the user does not reuse i old ones.

Then we carefully instantiate the three components. For the
single-password model, we choose to use a Markov model
with well-set parameters (denoted as Best-Markov), since it
performs the best under the single-password attack among ex-
isting single-password models [36, 37, 49, 52] (see Appendix
E). For the single-similar-password model, we design a sim-
ple model which only captures the most prevalent password-
reuse habit, i.e., head or tail modification [15]. For simplicity,
this model regards two passwords as reused passwords if the
length of their longest common substring is at least half of the
maximum length of them (note we say the password pair has
Feature LCSStr). In this way, our model is simple and further
leads to the efficiency of encoding. The details of the model
are given in Appendix A. We also try to use the existing single-
similar-password models, e.g., the pass2path model [38] and
the context Wasserstein autoencoder [39]. But we find our
model is more suitable for honey vaults because of its best
performance on the decoy vault generation (see Appendix G)
and the high encoding efficiency (see Appendix A).

For the unreused probability function, we can leverage a
real-world vault dataset (Pastebin, see Section 5.2) and count
the empirical probability f̂ (i) of the event that the i+1-th
password is not reused from the first i passwords4. Further,
we perform nonlinear regression on f̂ (i) and find f̂ (i) can
be fitted well with a 3-degree rational function in the form

4There may be a great number of i+1-tuples for some i. Thus, we estimate
the probability by sampling 104 tuples (with replacement) and counting f̂ (i)
in the samples instead of directly counting in all tuples.

6

Password vault model PrPVM Encoder

Multi-similar-password
model PrMSPM

Conditional encoder

Single-password
model PrSPM

Best-Markov

Single-similar-password
model PrSSPM

Our simple model

Unreused probability f Fitting function ffit

designed for

transform

construct as Equation (1) construct

construct as Equation (3)

instantiate

instantiate

instantiate

Figure 3: Technical roadmap of our designs.

f (i) = 1/(∑3
k=0 akik). As shown in Fig. 2, the fitted function

ffit(i) = 1
0.02455i3−0.2945i2+3.409i+0.0852 is very close to f̂ (i),

and | ffit(i)− f̂ (i)| ≤ 4.101×10−3. Thus, we use f (i) as the
unreused probability function (the coefficient is obtained from
a training set, not Pastebin). In addition, f̂ (i) decreases as i
increases, indicating that the more passwords a user has, the
lower probability the user creates a new password with. This
reflects the limit of human memory on passwords.

With the above constructions and instantiations, we finally
construct a concrete model and an encoder for honey vaults.
The full construction is shown in Fig. 3.

Time complexity of encoding. Applying the transforma-
tion proposed in Section 3.2, we can get a conditional encoder
for the multi-similar-password model and with efficiency in
encoding. Specifically, pwi is generated by reusing old pass-
words (pwi′)

i−1
i′=1 or is a brand new creation in our model.

Therefore, there are at most i generating paths for pwi under
the condition of (pwi′)

i−1
i′=1. The time complexity of encod-

ing a vault (pwi)
n
i=1 is O(n2). The details of the conditional

encoder are provided in Appendices A and B.

Complying with password policies. Many websites may
adopt password policies to prevent users from using weak
passwords, e.g., requiring passwords to contain at least 8 char-
acters. The passwords generated by the vault models (i.e., in
the decoy vaults) should always comply with the correspond-
ing policies, otherwise, attackers will easily identify those
decoys which do not.

For two classic policies, length restriction (e.g., ≥ 8 char-
acters) and character requirement (e.g., the inclusion of an
upper-case letter), we introduce an efficient method to ad-
just our model to guarantee that all passwords sampled from
the model achieve the complying requirement. The core idea
is to exclude the noncompliant lengths or characters when

encoding and decoding. Specifically, we adjust the length
distribution in best-Markov and our single-similar-password
model; and meanwhile, we model the position of the required
character type and adjust the corresponding character dis-
tribution (by adjusting, we mean excluding the lengths or
characters not complying the requirement and re-normalizing
the probabilities of the rest ones).

We note it is very challenging to guarantee the need w.r.t.
more complex policies (e.g., blacklist or password strength re-
quirement) and we leave this as an open problem. For the web-
sites with these policies, users can use randomly-generated
passwords that are easily complied with the policies.

3.5 Leakage Detection

We propose a mechanism to detect the leakages of storage
files of honey vaults. The core idea is to generate and store
some decoy accounts (called honeypot accounts) in a user’s
real vault. For example, if the user has a real account(name)
“Alice07” on Google, the vault application may generate (and
register) a honeypot account “Alice07” on Yahoo (with a
password generated by our model). These honeypot accounts
will not be used by the user (note we can choose the websites
the user rarely visits for honeypot accounts to avoid the user’s
misuse); and meanwhile they are really registered on the
corresponding websites. An attacker with the stolen storage
file cannot tell them from real accounts and will probably
log in to them (for online verification). Once the logins of
honeypot accounts occur, the leakage can be reliably detected.
Then the user should change all passwords in the vault to
prevent consequent account compromise. In this way, we
significantly mitigate the risk of vault file leakages.

Further, we consider the threat in the case where a pass-
word in a vault is leaked as well as the vault storage file.
In this case, the attacker can offline tell the real vault by
checking if the leaked password is in the vault. Although
this is an important and practical threat, it is not considered
in [13, 14, 18]. Fortunately, leveraging the leakage detection
mechanism for honey vaults and the existing alert mecha-
nisms for password breaches (e.g., [1, 19]), we can detect the
password and vault leakages, respectively. This enables users
to timely change the leaked passwords or vaults. Our solution
is a “pre-action” mechanism for the threat (preventing it from
happening) rather than a post-action (resisting the attacks
after the threat is there). Details are given in Appendix C.

3.6 Implementation and Performance

We use Python 3.8.2 with Cryptography 2.9 to implement
our vault scheme. Since AES within CTR mode satisfies our
requirement, we adopt it for encryption. For key derivation,
we use PBKDF2 with SHA-256. To evaluate the efficiency of
our scheme, we run it on a laptop, MacBook Pro with 2.6GHz

7

Table 4: Our proposed attacks

Scheme Attack Description Priority function

Optimal strategy Exploiting the difference between the
real and decoy vaults.

Equation (4). One factor in it is the real-to-decoy probability ratio on the vault
(the ratio of the real probability to the decoy probability of the vault).

Static
(and
adaptive)

Single-password attack Exploiting the difference on the
single-password distributions.

pSP(Vi), i.e. Equation (9). It is the product of real-to-decoy probability ratios
for each password in the vault Vi with smoothing.

Password-similarity attack Exploiting the difference on the
password-similarity features.

pPS(Vi), i.e. Equation (10) with F = {M\I, I\M}. It is the product of
real-to-decoy probability ratios for each password-similarity feature in F .

Hybrid attack Combined by single-password attack
and password-similarity attack.

pH(Vi), i.e. Equation (11). It is the product of the priority functions of the
single-password attack and the password-similarity attack.

Adaptive

Optimal strategy Exploiting the model/encoder which is
adjusted according to the real vault.

Equation (13). It contains an extra factor—the probability of the adjusted
model/encoder if the vault is real.

Adaptive extra attack Exploiting the number of n-grams of
which probabilities are increased.

pAE(Vi), i.e. Equation (14). It is the real-to-decoy probability ratio on the
increased n-gram number (under the condition Vi is real or not).

Adaptive hybrid attack Combined by hybrid attack and adaptive
extra attack.

pAH(Vi), i.e. Equation (15). It is the product of the priority functions of the
hybrid attack and the adaptive extra attack (with a little modification).

Table 5: The performance of our vault scheme

Vault size 2 20 200 2,000
Encode the last password1 1.21 ms 1.57 ms 7.88 ms 65.81 ms
Decode the last password1 0.28 ms 0.04 ms 0.03 ms 0.05 ms
Encode the vault 2.12 ms 26.27 ms 978.46 ms 70,782.77 ms
Decode the vault 1.13 ms 2.72 ms 13.21 ms 264.83 ms
Encrypt the vault2 2.27 ms 27.90 ms 951.44 ms 71,252.72 ms
Recover the vault2 1.53 ms 3.40 ms 13.51 ms 329.89 ms
Add a password3 1.05 ms 1.76 ms 7.97 ms 78.96 ms
Recover a password4 1.12 ms 1.28 ms 1.47 ms 3.20 ms
Storage file 0.33 KB 3.30 KB 33.00 KB 330.00 KB

1 Using our conditional encoder with all previous passwords.
2 Including encoding/decoding operations.
3 Including encoding and encrypting operations. Note due to the prefix-

keeping property of the encryption scheme, we only need to encrypt the
seed of the new passwords instead of the seed of the whole vault.

4 From the ciphertext of the whole vault and including decoding and de-
crypting operations. Note using our encoder, we do not need to decode
the whole vault. Instead, to decode a password pw, we only need to
decode the previous passwords reused for pw.

Intel Core i7 and 16 GB memory. The average times of 1,000
runnings are presented in Table 5.

Our incrementally updateable encoder can encode a new
password in 65.81 ms even with 2,000 old passwords, which
is extremely efficient. With our encoder, a new password can
be efficiently added to the vault (78.96 ms for size 2,000).
Although encoding a vault of size 2,000 requires 70.78 s,
it is still practical in stand-alone use. This is because this
operation is needed only when a vault is initialized. After
initialization, the user only needs to incrementally encode the
new or changed passwords.

In our scheme, decoding and recovering passwords are
more efficient than encoding and encrypting them. Recover-
ing a password in a vault of size 2,000 only needs 3.20 ms.
This is efficient because we made optimization for this opera-
tion. A naive way to decode the i-th password pwi in a vault
is to decode the first i−1 passwords one by one, which brings
O(i) time complexity. In contrast, we decode the first rule of
pwi and know that pwi is reused from a previous password

pw j or none of the previous ones. Then we can decode pwi
via decoding pw j or directly. Our decoding method reduces
the time complexity to O(log(i)).

4 Attacks Against Honey Vault Schemes

To evaluate the security of honey vault schemes when the
storage file (only the current version) is stolen, we investigate
the theoretically optimal strategy for online verifications, and
further propose several practical attacks. We summarize them
in Table 4 to make them more clear.

4.1 Attacker Model
Attacker ability. We consider a significant threat for honey
vaults: an attacker steals the (current) storage file of a vault
(e.g., from online sync services), and tries to reveal all stored
passwords from the file. The attacker also gets the program of
the honey vault scheme, including the HE algorithm and the
encoder, since the program should be stored along with the
storage file to provide handy service to users. So the attacker
can try to decrypt the ciphertext with a dictionary of master
password guesses. To distinguish the real and decoy vaults
decrypted from the ciphertext, the attacker may leverage some
public information, e.g., leaked datasets, website password
restrictions. Note that if the vault scheme uses a public dataset
to train its vault model, the attacker can identify the dataset
from the encoder of the model and may further use it to launch
attacks.

In this section, we do not consider the cases where the
attacker additionally gets an old version of the storage file or
a website password in the vault. We have addressed these two
cases in Sections 3.3 and 3.5, respectively.

Attack process. As shown in Algorithm 1, to reveal pass-
words from an encrypted vault, the attacker should decrypt the
ciphertext c with a dictionary of the master password guesses
{mpwi}N

i=1, and then obtain a (large) group of vaults {Vi}N
i=1,

8

Algorithm 1: The attack process with the stolen cipher-
text of a password vault.

Input: a stolen ciphertext c, N master password guesses {mpwi}N
i=1, and

a priority function p.
Output: the real password vault of c.

1 Offline:
2 for i← 1 to N do
3 Decrypt c with mpwi and get a vault Vi.

4 Sort {Vi}N
i=1 in descending order of p(Vi) and get a list {V ′i }N

i=1.

5 Online:
6 for i← 1 to N do
7 Online verify the correctness of V ′i (i.e., log in with a password

in V ′i on the corresponding website).
8 If V ′i is correct, output V ′i .

in which at most one of the vaults is real. To check the cor-
rectness of the vaults, the attacker needs to log in with the
passwords in the vaults (i.e., online verification).

The effectiveness of the attack depends on 1) the offline
guessing order of master passwords and 2) the online veri-
fication order of the vaults. The former is mainly related to
the strength of the master password, while the latter relies
on the security of the encoder (i.e. the indistinguishability of
real and decoy vaults). We recall that a master password is
a human-memorable password and may suffer from general
password guessing attacks [36, 38, 51, 52]. We take the same
research direction as [13, 14, 18], focusing on the security of
encoders.

We assume attackers will test target vaults (via online veri-
fication) in a descending order defined by a priority function.
Each vault is assigned a priority value so that attackers first
online verify those vaults with greater values. We denote this
priority function as p with a subscript representing the name
abbreviation of the attack. In practice, p(Vi) is strongly related
to the probability that Vi is the real vault among {Vi}N

i=1.

4.2 Theoretically Optimal Strategy

The theoretically optimal strategy of online verification is
to verify the vaults in the descending order of conditional
probabilities, where the condition is all the information that
attackers have known. In the following, we investigate this
strategy by analyzing the conditional probabilities.

We denote the random variables of the (real) master pass-
word, the (real) vault, the (real) seed and the ciphertext, as
MPW, V , S and C, respectively. Let MPW = mpwi denote the
event that a user’s real master password is identical to mpwi
(i.e., the user chooses mpwi as the master password MPW).
Similarly, we define V =Vi, S = Si and C = c. To keep consis-
tency with notations in Section 4.1, we define mpwi,Vi,Si,c
such that Si is decrypted from c with mpwi and Vi is decoded
from Si. We further denote the real master password distribu-
tion Pr(MPW = mpwi) as PrMPW(mpwi), the real vault distri-

bution Pr(V = Vi) as Prreal(Vi), the decoy vault distribution
as Prdecoy(Vi) (i.e., the probability of getting Vi by decoding
a random seed), and the probability of encoding Vi to Si as
Prencode(Si |Vi) (i.e., Pr(S = Si |V =Vi)), respectively.

For the (static) honey vault schemes, the only information
attackers can learn about the real vault V is its ciphertext c.
(An adaptive scheme will leak extra information about V , see
Section 4.4.) Therefore, the optimal strategy is to verify Vi in
the descending order of Pr(V =Vi |C = c).

For simplicity, we use Pr(MPW = mpwi | C = c) to es-
timate Pr(V = Vi | C = c)5. In addition, we notice that the
existing honey vault schemes [13, 14, 18] require a user to
create a completely new and distinct master password so that
the master password is independent of all the passwords in
the vault. This requirement is due to the limitation of HE [23]
that cannot guarantee the security for dependent key and mes-
sage distributions. Therefore, Pr(MPW = mpwi,V = Vi) =
PrMPW(mpwi)Prreal(Vi). According to the Bayesian theorem,
we have the following theorems.

Theorem 1. For an arbitrary encoder,

Pr(MPW = mpwi |C = c)

= k ·PrMPW(mpwi)Prreal(Vi)Prencode(Si |Vi), (4)

where k is a constant independent of i.

Proof. For arbitrary encoder we have

Pr(MPW = mpwi |C = c)

=
Pr(C = c,MPW = mpwi)

Pr(C = c)

=
Pr(C = c,MPW = mpwi,V =Vi)

Pr(C = c)

=
Pr(C = c |MPW = mpwi,V =Vi)

Pr(C = c)
×Pr(MPW = mpwi,V =Vi)

=
Pr(S = Si |V =Vi)Pr(C = c | S = Si,MPW = mpwi)

Pr(C = c)
×PrMPW(mpwi)Prreal(Vi)

=
Pr(C = c | S = Si,MPW = mpwi)

Pr(C = c)
×PrMPW(mpwi)Prreal(Vi)Prencode(Si |Vi).

Pr(C = c | S = Si,MPW = mpwi) only depends on the tra-
ditional PBE used by the honey vault scheme and is a constant
independent of i. Take the PBE used by Chatterjee et al. [13]
and Golla et al. [18] as an example, i.e., AES in CTR-mode
with PBKDF,

Pr(C = c | S = Si,MPW = mpwi) =
1

sIVssalt
,

5The vaults Vi and Vj under different master passwords mpwi and mpw j
may be the same (i.e., Vi =Vj). But this only happens with a low probability,
especially if the vaults are of a large size, because the space of vaults is much
larger than that of master passwords.

9

where sIV, ssalt are the sizes of the initialization vector space
and the salt space, respectively. Therefore,

k =
Pr(C = c | S = Si,MPW = mpwi)

Pr(C = c)

is a constant independent of i.

This theorem shows that Cheng et al.’s strong encoding
attack [14] is a degenerate case of the optimal strategy by
only considering the last factor Prencode(Si |Vi) as the priority
function. If an encoder is not seed-uniform (i.e., the seeds
of a message are not randomly chosen when encoding the
message), the real and decoy vaults can be effectively distin-
guished by merely exploiting the encoder (i.e., calculating
Prencode(Si |Vi)) without any knowledge of the master pass-
word and password vault distributions (i.e., PrMPW(mpwi),
Prreal(Vi)).

Theorem 2. If the encoder is seed-uniform, then

Pr(MPW = mpwi |C = c)

= k ·PrMPW(mpwi)
Prreal(Vi)

Prdecoy(Vi)
, (5)

where k is a constant independent of i.

Proof. Let l be the length of seeds. Due to the seed-uniformity
of the encoder, Prencode(Si |Vi) =

1
2l Prdecoy(Vi)

(2l Prdecoy(Vi) is
the number of seeds for Vi). Then we have

Pr(MPW = mpwi |C = c)

=
Pr(C = c | S = Si,MPW = mpwi)

2l Pr(C = c)

×PrMPW(mpwi)
Prreal(Vi)

Prdecoy(Vi)
.

We can let k be

Pr(C = c | S = Si,MPW = mpwi)

2l Pr(C = c)
,

which is a constant independent of i.

Theorem 2 indicates that if an encoder is seed-uniform,
attackers cannot get any information from the encoder except
the decoy vault distribution (i.e., Prdecoy(Vi)). This analysis
confirms that Cheng et al.’s transformation is secure, i.e., their
encoder resists encoding attacks. By applying the secure en-
coders to the existing honey vault schemes [13, 18], we only
need to consider how to hold against distribution difference
attacks. This type of attack is defined in [14], referring to the
attacks that only exploit the difference between the real and
decoy distributions (i.e., Prreal(Vi) and Prdecoy(Vi)).

We use Theorem 2 to present a new vision for the secu-
rity analysis w.r.t. HE and honey vault schemes. For a seed-
uniform encoder, if the decoy distribution is the same as

Table 6: Examples of real-to-decoy probability ratios

Vault Password Reuse
feature†

Increased
n-gram
number

Example (123456,1234567) 123456 0 1 4
Real probability –* 10−2 0.8 0.2 10−7

Decoy probability 10−4 5×10−3 0.4 0.6 10−9

Ratio –* 2 2 0.333 100
* It is hard to precisely calculate the real probability and the ratio for a

vault. So we use some methods to estimate the ratio for attacks.
† Each feature used in our classifier is a Boolean (binary variable).

the real one, i.e., Prdecoy = Prreal, then Pr(MPW = mpwi |
C = c) = PrMPW(mpwi) (in this case, k = 1). Therefore,
the mutual information of C and MPW is I(MPW;C) =
H(MPW)−H(MPW | C) = 0. This means that the cipher-
text C does not leak any information of the key MPW, which
achieves the ideal security of HE and honey vault schemes.

Without considering PrMPW (as discussed in Section 4.1),
the optimal online verification order for vaults {Vi}i is the
descending order of

Prreal(Vi)

Prdecoy(Vi)
, (6)

which is denoted as pOPT. The basic idea behind this real-
to-decoy probability ratio pOPT is simple and intuitive. A
high pOPT(Vi) means the vault model used in the honey vault
scheme significantly underestimates the real probability of Vi.
In other words, Vi is less likely generated by the vault model
than being generated by the user. Therefore, Vi is more likely
to be real among {Vi}N

i=1.

4.3 Practical Attacks

The optimal online verification with the priority function
pOPT is hard to be carried out, since it is difficult to precisely
calculate the real probability Prreal(Vi) for attackers. This dif-
ficulty also hinders the direct use of existing techniques, e.g.,
Bayesian updating, in calculating pOPT.

Leveraging an advanced model seems to be a straight-
forward method to estimate Prreal. Unfortunately, all current
models have defects, which lead to the misestimation of the
probabilities [50]. For example, the PCFG model [52] un-
derestimates the passwords with relative components, e.g.,
“1q2w3e”, because the model assumes these components
are independent and does not further consider their relation-
ships [50]. The misestimation of a model will lead to the
misestimation of pOPT(V) and further significantly decrease
the effectiveness of attacks. Note we have tried to use dif-
ferent single-password models to estimate the real single-
password distribution, e.g., Markov models [36], but could
not obtain stable and reasonable effectiveness in attacking all
other single-password models.

10

To overcome the difficulty, we use several methods to es-
timate the real-to-decoy probability ratio pOPT and further
propose several practical attacks as follows. The characteriza-
tion of both the single-password distribution and the password
similarity are the two significant indices of a vault model. Ac-
cordingly, our estimations will focus on these two indices.

Single-password attack. To capture the difference between
real and decoy vaults on the single-password distribution, we
use the real-to-decoy probability ratio on the single password
to estimate the ratio pOPT(Vi) on vault. Formally assume
that the passwords in a vault are independent (ignoring their
similarity), pOPT(Vi) can be simplified/estimated as

∏
pw∈Vi

Prreal(pw)
Prdecoy(pw)

, (7)

where Prreal(pw) and Prdecoy(pw) represent the real and decoy
single-password distributions, respectively. Prdecoy(pw) can
be calculated by the single-password models in honey vault
schemes, but we still need to estimate Prreal(pw).

To estimate Prreal(pw), we directly use the relative fre-
quency of pw in a password training set, instead of using some
password models. We note this is because we do not want to
bring the misestimation of password probability yielded by
single-password models to our attacks (as discussed above).
According to the law of large numbers, the relative frequency
of an event converges (almost surely) to its probability, as the
number of experiments approaches infinity. To avoid mises-
timation incurred by inappropriate training sets, we choose
the dataset which has been used to train the single-password
model by the honey vault schemes (see Section 5.2).

In addition, smoothing is further needed since some pass-
words not appearing in the training set have zero frequency.
With a carefully-designed smoothing method, we propose an
estimation pSP(pw) for Prreal(pw)

Prdecoy(pw) as

pSP(pw)=

1 if fa(pw)≤ fd and f ′r (pw)

Prdecoy(pw)>1,

f ′r (pw)
Prdecoy(pw)

otherwise,
(8)

where fa(pw) is the absolute frequency of pw in the train-
ing set, n is the size of the training set, αs is a smoothing
parameter, fd is a parameter representing the demarcation line
between high-frequency and low-frequency passwords, and
f ′r (pw) = fa(pw)+αs

n+αs
. Our estimation is similar to maximum

likelihood estimation (MLE) with Laplace smoothing. Unlike
Laplace smoothing used in [36], our smoothing only adds αs
for the calculated pw instead of all passwords in the password
space. This is because the password space is extremely large,
using Laplace smoothing will make f ′r (pw) to approach to 0
for all pw. In addition, we note that our smoothing may lead
to overestimation for the probabilities of some low-frequency
passwords. Thus, we choose to set pSP(pw)= 1 for passwords

with absolute frequency no more than fd and f ′r (pw)
Prdecoy(pw) > 1.

After a few tries, we finally set αs = 1 and fd = 5.
Using pSP(pw), we propose a single-password attack with

the following priority function

pSP(Vi) = ∏
pw∈Vi

pSP(pw). (9)

Informally, this attack gives priority to the vaults of which
some passwords are not accurately characterized (their proba-
bilities are underestimated) by the single-password model in
honey vault schemes. According to Theorem 2 and Equation
(7), the vaults are more likely to be real.

Password-similarity attack. To capture the difference be-
tween real and decoy vaults on the password similarity, we
use the real-to-decoy probability ratio on some features with a
Bernoulli naive Bayes classifier to estimate the ratio pOPT(Vi).
The features should capture the misestimation of the vault
models on the password similarity. With a carefully-chosen
feature set F , pOPT(Vi) can be simplified/estimated as

∏
F∈F

Prreal(F = F(Vi))

Prdecoy(F = F(Vi))
, (10)

where F(Vi) is the value of Feature F for Vi (F(Vi) = 1 if
Vi has Feature F , otherwise, F(Vi) = 0), Prreal(F = x) is the
probability that the value of Feature F is x for a real vault,
and Prdecoy(F = x) is the probability for a decoy vault.

We demonstrate that the estimation is effective. Unlike
Prreal(Vi) which is difficult to be calculated, Prreal(F = x) can
be counted from a password vault dataset (counting the pro-
portion of vaults which have Feature F for x = 1, and the rest
proportion for x = 0). The vault dataset (Pastebin, in Section
5.2) we are going to use is small, so we only choose two
binary features for the Bayes classifier with four parameters.
Similarly, Prdecoy(F = x) can be counted from a set of decoy
vaults generated by the encoder (decoding random seeds).

To design appropriate features, we first analyze the charac-
terization of vault models on the password similarity. Recall
that a user almost always reuses passwords in different ac-
counts [15], therefore, the passwords in his vault usually are
similar. A vault model should precisely capture the similarity
and further generate similar (i.e., reused) passwords in decoy
vaults. In the existing models, a password pair (pw1, pw2) is
treated as similar by simple rules: in Golla et al.’s model [18],
pw1, pw2 are treated as similar if pw1 is the same as pw2 ex-
cept for the last 5 characters (we say (pw1, pw2) has Feature
GM); in Chatterjee et al.’s model [13], pw1, pw2 are treated
as similar if pw1 and pw2 share at least one production rule
in their PCFG model (we say (pw1, pw2) has Feature CM).
The sample treatment leads to the inaccuracy of the models
on password similarity.

To crack a vault model, we define Features M and I:
(pw1, pw2) has Feature M if the model treats pw1, pw2 as

11

similar; (pw1, pw2) has Feature I if a user can create pw2 by
reusing pw1. Then Features M and I capture the similarity
among passwords in decoy vaults and real vaults, respectively.
Therefore, the difference between Features M and I can be
used to exploit the misestimation of the model. Formally, we
define the feature difference as follows.

Definition 1. We say (pw1, pw2) has Feature A\B, i.e., the
difference of Features A and B, if (pw1, pw2) has Feature A
but not Feature B.

With a well-defined Feature I, we can use F = {M\I, I\M}
to propose a password-similarity attack. Here, we define that a
vault V has Feature X, if there exist two passwords pw1, pw2
in V such that (pw1, pw2) has Feature X. Note that the model
probably overestimates the probability of a vault with Feature
M\I and underestimates that for a vault with Feature I\M.

However, it is difficult to precisely define Feature I. We use
Feature LCSStr as an approximation of Feature I to attack
Chatterjee et al.’s and Golla et al.’s schemes, due to the fact
that modifying the head or tail characters is most popular in
reuse habits [15]. But for our scheme, Feature M is Feature
LCSStr (see Section 3.4), then Features M\I and I\M are trivial
with Feature LCSStr as Feature I (no vaults have Feature
LCSStr\LCSStr). So we leverage four password similarity
meters used in [15] to define Feature I, including Levenshtein
[31], longest common subsequence (LCS), Manhattan [28],
and Overlap [30]. For each meter F, we define that (pw1, pw2)
has Feature F, if the similarity score of (pw1, pw2) is at least
0.5 under the meter F.

To summarize, we use Equation (10) as the priority func-
tion pPS with F = {M\I, I\M} for the password-similarity
attack. To crack Chatterjee et al.’s scheme, Features M and I
are Features CM and LCSStr, respectively; for Golla et al.’s
scheme, Features M and I are Features GM and LCSStr, re-
spectively; for our scheme, Features M is Feature LCSStr and
Feature I is one of Features Levenshtein, LCS, Manhattan,
and Overlap. We summarize these features in Table 7. Note
that this attack gives priority to these vaults, in which the pass-
word similarity is not well characterized by the vault model in
a honey vault scheme. According to Theorem 2 and Equation
(10), these vaults are more likely to be real.

Hybrid attack. Combining the single-password attack with
the password-similarity attack, we propose a hybrid attack
with the following priority function

pH(Vi) = pSP(Vi) · pPS(Vi). (11)

Note that like pOPT, pSP and pPS are in the form of real-to-
decoy probability ratios, but on different indices. So we keep
this form by multiplying pSP and pPS, and then the product pH
can estimate pOPT more precisely. This is confirmed by our
experimental results that the hybrid attack always performs
better than the previous two attacks (see Section 5).

Table 7: The features of a password pair used in the password-
similarity attack

Feature Description

LCSStr
The password pair has Feature LCSStr if the length of their
longest common substring is at least half of the maximum
length of them.

GM If the two passwords are the same except for the last 5
characters.

CM If the two passwords share at least one production rule in
Chatterjee et al.’s PCFG model.

Levenshtein If the Levenshtein (edit) distance of the two passwords is at
least half of the maximum length of them.

LCS If the length of the longest common subsequence of the two
passwords is at least half of the maximum length of them.

Manhattan The Manhattan distance of the two passwords is at least half of
the length sum of them.

Overlap The union size of the character sets of the two passwords is at
least half of the minimal size of the character sets of them.

Other attacks. The support vector machine (SVM) attack
and the Kullback–Leibler (KL) divergence attack are pro-
posed by Chatterjee et al. [13] and Golla et al. [18], respec-
tively. Since the latter outperforms the former against all the
existing vault models, we will use the latter for comparison.
The priority function of the KL divergence attack is defined
as

pKL(Vi) =
s

∑
j=1

f j log
f j

Prdecoy(pw j)
, (12)

where Vi contains s unique passwords {pw j}s
j=1, and f j is the

relative frequency of pw j in Vi.
Golla et al. [18] exploit extra information to enhance their

KL divergence attack, including username, password reuse
rate and password policy. Among the three types of infor-
mation, only password policy has significant improvement
for KL divergence attack. Attackers can easily exploit it to
distinguish the decoys not complying with the policy. We
will also consider the password policy attack with a minor
difference. Formally speaking, the priority function pPP of
this attack can be defined as: 1) if there exists a password not
complying with its policy in the vault Vi, then pPP(Vi) = 0;
2) otherwise, pPP(Vi) = 1. Unlike [18] which only considers
one password in a vault, our password policy attack requires
all passwords to comply with their policies and can exclude
much more decoy vaults.

4.4 More Attacks to Adaptive Encoders

For static schemes, the storage file c is the only information
that attackers can learn. But for adaptive schemes, attackers
can learn extra information about the real vault from the
encoder. This is because the adaptive encoder is adjusted
according to the encrypted real vault. We exploit the “extra”
information and propose more attacks to adaptive schemes.

12

Theoretically optimal strategy. We denote the random
adaptive encoder as DTE, and let DTE = DTE∗ be the event
that the encoder is adjusted to DTE∗ according to the real
vault. The theoretically optimal strategy here is to verify the
vaults {Vi}i in the descending order of Pr(V = Vi | DTE =
DTE∗,C = c). Recall that the adaptive encoder DTE∗ and the
ciphertext c are the only information that attackers can learn.
Similar to the attacks against static encoders, we leverage
Pr(MPW = mpwi | DTE = DTE∗,C = c) to estimate Pr(V =
Vi | DTE = DTE∗,C = c) and have the following theorem.

Theorem 3. If the adaptive encoder DTE∗ is seed-uniform,
then

Pr(MPW = mpwi | DTE = DTE∗,C = c)

=k ·PrDTE(DTE∗ |Vi)PrMPW(mpwi)
Prreal(Vi)

PrDTE∗(Vi)
, (13)

where k is a constant independent of i, and PrDTE∗(Vi) rep-
resents the distribution of decoy vaults generated by DTE∗,
PrDTE(DTE∗ |Vi) represents the probability that DTE is ad-
justed to DTE∗ according to Vi.

Proof. Let PrDTE(DTE∗ | Vi) denote Pr(DTE = DTE∗ | V =
Vi), i.e., the conditional probability that the DTE is adjusted
to DTE∗ according to the encrypted real vault Vi. Then we
have

Pr(MPW = mpwi | DTE = DTE∗,C = c)

=
Pr(DTE = DTE∗,C = c,MPW = mpwi)

Pr(DTE = DTE∗,C = c)

=
Pr(DTE = DTE∗,C = c,MPW = mpwi,V =Vi)

Pr(DTE = DTE∗,C = c)

=
Pr(C = c | DTE = DTE∗,MPW = mpwi,V =Vi)

Pr(DTE = DTE∗,C = c)
×Pr(DTE = DTE∗,MPW = mpwi,V =Vi)

=
Pr(C = c | S = Si,MPW = mpwi)

Pr(DTE = DTE∗,C = c)
×Pr(S = Si | DTE = DTE∗,V =Vi)

×PrDTE(DTE∗ |Vi)PrMPW(mpwi)Prreal(Vi)

=
Pr(C = c | S = Si,MPW = mpwi)

2l Pr(DTE = DTE∗,C = c)

×PrDTE(DTE∗ |Vi)PrMPW(mpwi)
Prreal(Vi)

PrDTE∗(Vi)
.

We can set k to be

Pr(C = c | S = Si,MPW = mpwi)

2l Pr(DTE = DTE∗,C = c)
,

which is a constant independent of i.

The priority functions of optimal strategy for the static
and adaptive encoders differ by one factor PrDTE(DTE∗ |Vi),
which indicates the “extra” information leaked by DTE∗.

Practical attacks. To carry out practical attacks, we need to
calculate PrDTE(DTE∗ |Vi) individually. But this is difficult
for Golla et al.’s adaptive encoder [18]. We propose to use a
simple method to estimate its value, and further design two
attacks. The estimation method is similar to the one used
in [18] for the security analysis of adaptive encoders. The
basic idea of the estimation is to leverage the real-to-decoy
probability ratio on the number of n-grams whose probability
is increased by Golla et al.’s adjustment.

We first review Golla et al.’s adjusting process: 1) for each
password in a real vault, randomly pick an n-gram (from the
password) and multiply its probability with a factor α; 2)
for each un-increased n-gram, increase its probability by the
factor α with a probability of pi. Golla et al. empirically set
n = 4 for the Golla-Markov, and α = 5 and pi = 0.2. Note
that there exists an ambiguity that if the probability of an
n-gram can be increased multiple times, when the n-gram
appears in multiple passwords. If we assume that is a “yes”,
then an n-gram increased t times (t ≥ 2) must appear in at
least t passwords in the real vault. Noticing this, attackers can
directly identify the real vault with this type of n-gram.

For real password vaults containing multiple identical or
similar passwords, multiple increases will occur with a high
probability. If a vault contains k identical passwords of length
l, then the multiple increases happen with at least 1− lk

lk proba-
bility, where lk is the falling factorial representing ∏

k−1
i=0 (l− i).

Note that if k > l, then 1− lk

lk = 1. Therefore, allowing multi-
ple increases may be a great threat for Golla et al.’s adaptive
encoder [18]. In this paper, we forbid the multiple increases.
Given a password in the real vault, we randomly pick an
un-increased n-gram to increase; but if all n-grams of the
password have been increased, we’ll skip the password.

Assume that Vi contains s unique passwords {pw j}s
j=1. Let

m j be the number of pw j in Vi, l j be the length of pw j (then
the number of n-grams is l j − n+ 1), k j be the number of
increased n-grams in pw j, and m be the size of Vi (i.e., ∑ j m j),
respectively. If Vj is real, then m∗j = min{m j, l j− n+ 1} n-
grams in pw j are increased in the first step of encoder adjust-
ing and k j−m∗j in the second step6. The corresponding prob-
ability is fN(k j −m∗j ; l j − n + 1−m∗j , pi), where f (k;m, p)
is the probability mass function of the Binomial distribu-
tion B(m, p). Otherwise, k j increased n-grams in pw j are
all increased in the second step7. This probability is fN(k j;
l j−n+1, pi). With fN(k j−m∗j ; l j−n+1−m∗j , pi) and fN(k j;
l j−n+1, pi) as real and decoy probabilities on increased n-
gram numbers, we use the ratio of these two probabilities to
estimate PrDTE(DTE∗ |Vi) as

pAE(Vi) =
s

∏
j=1

fN(k j−m∗j ; l j−n+1−m∗j , pi)

fN(k j; l j−n+1, pi)

6For simplicity, we exclude the case where an n-gram may appear in
multiple different passwords in the vault.

7We exclude the case where n-grams in pw j may appear in the real vault.

13

=
s

∏
j=1

(l j−n+1−m∗j
k j−m∗j

)
p

k j−m∗j
i (1− pi)

l j−n+1−k j(l j−n+1
k j

)
p

k j
i (1− pi)

l j−n+1−k j

=
s

∏
j=1

1

p
m∗j
i

·
l j−n+1

∏
t=k j+1

t−m∗j
t

. (14)

With pAE as the priority function, we propose an adap-
tive extra attack. Note if there exists j with k j < m∗j (i.e.,
pAE(Vi) = 0) for a vault, then the vault must be decoy. This is
because if this vault is real, then there are at least m∗j n-grams
in pw j that are increased. As can be seen from this case,
exploiting the information leaked by the adaptive encoder,
attackers can easily exclude some decoy vaults.

Furthermore, we propose an adaptive hybrid attack by com-
bining the adaptive extra attack with the hybrid attack. Its
priority function is defined as

pAH(Vi) = sgn(pAE(Vi)) · pH(Vi), (15)

where sgn is the sign function. At the first attempt, we used
pAE(Vi) · pH(Vi). But we later found out that its performance
(sometimes) was worse than that of the hybrid attack. This
may be caused by the estimation error. To optimize its per-
formance, we then use sgn(pAE(Vi)) for pAH(Vi) instead of
pAE(Vi). Specifically, the adaptive hybrid attack first excludes
the decoy vaults with pAE of 0 and then cracks the remain-
ing vaults by launching the hybrid attack. Thus, the adaptive
hybrid attack should always outperform the hybrid attack.

5 Security Evaluation under Our Attacks

We evaluate the existing and our honey vault schemes over
the attacks proposed in Section 4 via real-world datasets.
The experimental results show that our scheme achieves a
significant improvement on security.

5.1 Security Metrics
An attack is more effective if it can use a smaller number of
online verifications to identify the real vault for a given cipher-
text (see Algorithm 1). This number of online verifications is
identical to the rank of the real vault among a large number of
decoys in the order defined by the priority function. Thus, we
use the ranks of real vaults to indicate the security of a honey
vault scheme against the attack, as in [13, 14, 18].

Chatterjee et al. [13] and Golla et al. [18] use the average
rank r as a crucial security metric in their evaluation. Chatter-
jee et al. [13] also define the accuracy α in distinguishability.
Please note that α is the probability of identifying the real
from only one decoy (by sorting these two with the priority
function), not from a larger number of decoys. To present
a comprehensive evaluation, Cheng et al. [14] leverage the
cumulative distribution functions (RCDFs) F(x) of the ranks.

Note that each incorrect master password yields a decoy.
Since the master password space is large, it is difficult to
calculate the rank of a real vault by generating all decoys.
Instead, we choose Cheng et al.’s method [14] to estimate the
rank in relative form by sampling N decoys (N = 999). The
rank then is defined as the ratio of the rank to the number of
decoys, which is a real number in [0,1] and reflects the relative
position in the online verification order. For example, a vault
of rank 0.2 will be online verified after checking 20% decoys.
In relative form (hereafter, by rank we mean its relative form),
r and α can be derived from F(x) [14] as

r = 1−
∫ 1

0
F(x)dx, α = 1− r. (16)

For the sake of comparison fairness, we use the (above)
same metrics in our experiments, including r, α, F(x). In
addition, we also use F(0) as in [14], which indicates the
proportion of real vaults with rank 0—the vaults cracked in
only one-time online verification (i.e., one guess).

A perfectly secure honey vault scheme guarantees that real
and decoy vaults should be indistinguishable, so that the ranks
under any attacks follow the uniform distribution U [0,1] (i.e.,
any attacks perform the same as the randomly guessing attack
with a constant priority function). We then have F(x) = FU (x)
(= x for 0≤ x≤ 1) and r = α = 0.5. Therefore, we use FU (x)
as the baseline for the comparison.

5.2 Experimental Settings
To present a fair and comprehensive comparison, we utilize
the same datasets used in [13, 14, 18]: RockYou as the pass-
word dataset and Pastebin as the password vault dataset. Rock-
You, which is one of the largest leaked plaintext password sets,
provides 32.6 million password samples. Being able to main-
tain the completeness of samples and offer a sufficiently large
sample size, it is widely used in the security evaluation on
recent password researches [8, 36, 37, 51]. To the best of our
knowledge, Pastebin is the only publicly available password
vault dataset. it consists of 276 vaults with sizes of 2–50. The
data of Pastebin, collected by malware embedded on clients,
may indirectly provide us a vision of current exploit means
of attackers. In the experiments, we only use these datasets
to perform security evaluations. From this perspective, the
datasets will bring no harm to valid users and the evaluation
results will inspire us to design more secure schemes.

To evaluate the security of honey vault schemes, we do 5-
fold cross-validation on Pastebin. Specifically, we randomly
divide Pastebin into five parts. We take one part as the test set
and the union of other parts as the training set. The vaults in
the test set are treated as the real vaults which will be protected
(i.e., encrypted) by honey vault schemes and be cracked by
attacks. The training set (with RockYou) is used to train the
vault models by honey vault schemes. As discussed in Section
4.1, we also use the same training set to train attacks. In this

14

Table 8: The average rank r of real vaults under attacks

Scheme KL di-
vergence

Single
pass-
word

Password
similar-

ity
Hybrid

Chatterjee et al.’s [13] 14% 10% 22% 6%
Golla et al.’s [18] (static, 100) 48% 22% 26% 14%
Golla et al.’s [18] (static, 10−1) 37% 19% 23% 14%
Golla et al.’s [18] (static, 10−2) 34% 20% 26% 14%
Golla et al.’s [18] (static, 10−4) 31% 20% 23% 15%
Golla et al.’s [18] (static, 10−6) 30% 19% 24% 14%
Golla et al.’s [18] (static, 10−8) 29% 19% 24% 15%
Golla et al.’s [18] (static, 10−10) 29% 19% 23% 14%
Golla et al.’s [18] (adaptive, 100) 54% 22% 25% 14%
Golla et al.’s [18] (adaptive, 10−1) 43% 20% 25% 13%
Golla et al.’s [18] (adaptive, 10−2) 40% 21% 25% 13%
Golla et al.’s [18] (adaptive, 10−4) 37% 20% 25% 13%
Golla et al.’s [18] (adaptive, 10−6) 36% 21% 26% 13%
Golla et al.’s [18] (adaptive, 10−8) 35% 20% 24% 12%
Golla et al.’s [18] (adaptive, 10−10) 34% 20% 24% 13%
Ours 42% 48% 43% 42%

1 10i represents the pseudocount of Laplace smoothing used in Golla-
Markov [18].

2 The average rank r and the accuracy α have the relationship: r+α = 1.

Table 9: The average rank r under extra attacks against Golla
et al. adaptive schemes [18] with different pseudocounts

Attack 100 10−1 10−2 10−4 10−6 10−8 10−10

Adaptive extra 29% 26% 24% 24% 24% 25% 26%
Adaptive hybrid 9% 8% 8% 8% 7% 7% 7%

setting, we exploit the honey vault schemes to generate decoy
and launch attacks to get the rank of each vault in the test set.
For each part of Pastebin, we do the above experiment to get
ranks of all vaults in Pastebin.

Some important details in the experiments need to be no-
ticed:

1. The honey vault schemes usually need a password
dataset to train their single-password model. As in
[13,18], we adopt RockYou for this purpose. This dataset
is also used for attacks (if needed).

2. Some attacks need to calculate decoy probabilities (on
single password or password feature). This calculation
can be launched with the stolen encoders and does not
need an extra dataset.

3. Golla et al. [18] do not provide a training method for
their reuse-rate approach. For a fair comparison with
previous studies, we directly use their parameters in our
experiments without training.

5.3 Experimental Results

The performance of our attacks. As shown in Fig. 4, Ta-
bles 8 and 9, our proposed attacks perform well against all of
the existing schemes. For all the static schemes, the hybrid
attack has the best performance, achieving 94% accuracy α

(= 1−r) against Chatterjee et al.’s scheme [13] and 85%–86%

Table 10: RCDFs F(x) for honey vault schemes under the
corresponding best attacks

Scheme F(0) F(1/4) F(1/2) F(3/4)
Chatterjee et al.’s [13] 55% 93% 98% 99%
Golla et al.’s [18] (static, 100) 33% 71% 92% 100%
Golla et al.’s [18] (adaptive, 100) 45% 84% 99% 100%
Ours 2% 37% 61% 80%

F(0) indicates the cracked proportion of vaults via only one online guess.

against Golla et al.’s scheme [18] (with different parameters),
as the average rank r for Chatterjee et al.’s scheme is 6% and
those for Golla et al.’s scheme are 14%–15%. Note Cheng
et al.’s honey vault scheme [14] is the same as Golla et al.’s,
since we adopt Cheng et al.’s encoder for Golla et al.’s scheme
(see Section 2.3). Thus the two schemes achieve the same
experimental results, and we do not illustrate the results for
Cheng et al.’s scheme separately. With regard to the adap-
tive scheme, the adaptive hybrid attack outperforms others,
capturing 91%–93% accuracy α, as the average ranks r are
7%–9%. Our attacks are based on the theoretically optimal
strategy with more accurate estimation, yielding stable and
high accuracy.

The performance of the KL divergence attack is severely
affected by the pseudocount of Laplace smoothing used in
Golla-Markov. While pseudocount is set to 1, we have the
worst attack performance, achieving 46% and 52% accuracy
against Golla et al.’s static and adaptive encoders [13], respec-
tively. As shown in Figs. 4b and 4c, the RCDFs are close to
the baseline, which means the attack performs close to the
randomly guessing attack. We demonstrate that it is difficult
to distinguish real vaults from decoys without any information
of the real vault distribution. The attack, however, only esti-
mates the distance between the vault to be sorted and decoy
vaults, not considering the distance between the vault and real
vaults. This may lead to some misjudgments. There may exist
a target with a “large” distance from the decoy vaults but also
with a “larger” distance from the real vaults. The attacker will
mistreat the target as the real vault which is actually more
likely to be a decoy. To propose more effective attacks, we
must exploit both the real and decoy distributions.

The security of the existing schemes. The accuracy of
our proposed attacks reveals the vulnerability of the existing
schemes. In terms of the single-password distribution and the
password similarity, the existing schemes fail to characterize
the real vault distribution. This is proved by our experimen-
tal results, the single-password and the password-similarity
attacks achieving 78%–90% and 74%–78% accuracy, respec-
tively. Further, we find out that the pseudocount has an impact
on the security of Golla et al.’s schemes [18]: when it is set
to 1 these schemes achieve the best security. Here, we only
show the RCDFs with this pseudocount.

Exploiting the extra information leaked by the adaptive

15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(a) Chatterjee et al.’s

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(b) Golla et al.’s (static, 100)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(c) Golla et al.’s (adaptive, 100)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(d) Ours
KL divergence attack Single-password attack Password-similarity attack Hybrid attack

Adaptive extra attack Adaptive hybrid attack Baseline (Randomly guessing)

Figure 4: RCDFs for honey vault schemes under attacks.

scheme, our adaptive hybrid attack increases α to 91%–93%,
which is higher than the α on the static schemes with the same
pseudocounts under the hybrid attack, i.e., 85%–86%. The
findings of our experiments overturn the conclusion stated in
[13]: “adaptive schemes are more secure than the static ones.”
In fact, an adaptive scheme inevitably does leak information
of the encrypted real vault. By only exploiting the (leaked)
information, our adaptive extra attack achieves 71%–76%
accuracy without any knowledge of the real vault distribution.

We note that 1) any adaptive scheme (more precisely, its
vault model) is adjusted from its original version according to
the real vault (which is about to be encrypted by the scheme);
2) the original model has already been trained with a real pass-
word vault dataset. If the size of the training set is sufficiently
large, adding one more real vault (i.e., the encrypted vault)
cannot significantly improve the precision of the model. As
shown in Table 8, the average ranks of static and adaptive
schemes using the same pseudocount are almost identical
under our hybrid attack (without exploiting the leaked in-
formation). We thus conclude that compared with its static
variant, an adaptive scheme cannot achieve stronger security
and more importantly, the leaked information of the encrypted
vault eventually makes it less secure.

The security of our scheme. We only show the password-
similarity attack and the hybrid attack with Feature Overlap
in Fig. 4 and Table 8, since the feature performs the best for
attacks among the four features demonstrated in Section 4.3.
The experimental results for other features are given in Table
16 (see Appendix G).

As shown in Fig. 4 and Table 8, the hybrid attack delivers
the best performance, where the average rank r and the ac-
curacy α are 42% and 58%, respectively. Compared to the
existing schemes with 85%–94% accuracy and 6%–15% av-
erage rank, our scheme brings 2.8–7.5 times cost of online
verifications to attackers. Since online verifications can be
quickly detected and prevented [17, 21, 42], our scheme does

make a significant improvement on resisting distinguishing
attacks in single-leakage case.

The decreased cracked proportions also illustrate the secu-
rity improvement. As shown in Table 10, the existing schemes
suffer from 33%–55% (i.e., F(0)) real vaults cracking via one
guess, this value is only 2% for our scheme, which decreases
the harm by 93%–96%.

5.4 Further Discussion

Other experiments. We also evaluate the security of honey
vault schemes against the password policy attack and the in-
tersection attack (see Appendices F and D). The experimental
results are trivial: the attacks can completely break the exist-
ing schemes, but are resisted by ours.

Limitation on the dataset. The vault dataset, Pastebin, we
used, is not leaked from real vault applications and its size is
relatively small (see Section 5.2). Although it is well-studied
and used in [13,14,18] for security evaluation, the quality of it
may yield some bias in our experimental results. Nevertheless,
our experiments still demonstrate the insecurity of the existing
honey vault schemes [13, 14, 18]. Furthermore, the quality
of the dataset does not affect some important conclusions: 1)
our construction with the incremental update mechanism can
resist intersection attacks; 2) an adaptive scheme leaks extra
information of the encrypted vault and is less secure than its
static variant.

In general, a dataset with better data quality may help an
attacker to more precisely model the real vault/password distri-
bution and more effectively distinguish real and decoy vaults
against honey vault schemes (including ours). On the other
hand, such a dataset may benefit the design of vault models.
Via our generic construction roadmap, using a more accurate
multi-similar-password model can generate more plausible-
looking decoys and the update security will be maintained.

16

We note that designing a model and cracking it is not a cat-and-
mouse game. If one can design a vault model that precisely
captures most of the vaults in the vault space, then arbitrary
attackers, even with better-quality datasets, will have little
advantage in distinguishing real and decoy vaults.

More powerful attacks. There may be some other informa-
tion that could be used (as pre-knowledge) to launch attacks.
Personal information may be one of the options, since users
may create passwords based on name, birthday, phone num-
ber, email and username [33, 51]. Attackers may identify a
real vault with a higher probability. e.g., by checking if the
passwords in the vault match personal information. To resist
this type of attack, we may consider using a conditional proba-
bility model (e.g., the Personal-PCFG model [33]) that is able
to characterize the real vault distribution under the condition
of the provided information.

The size of a vault may also provide an extra advantage
for attackers in launching online verification. With more ac-
counts on different websites, attackers may be allowed to
launch more online verifications on these websites. We do not
consider this advantage and leave it as future work.

6 Conclusion and Future Work

We propose a generic construction and further an incremental
update mechanism for honey vault schemes. The update mech-
anism enables the vault scheme to achieve the update security,
i.e., resisting intersection attacks in the multi-leakage case.
We instantiate our scheme with a well-designed multi-similar-
password model. Our evaluation with real-world datasets
shows that compared with the existing schemes, our instance
achieves a significant improvement on security against (tradi-
tional) distinguishing attacks in the single-leakage case.

Our work may also benefit other research topics. For exam-
ple, the incremental update mechanism can be used for other
HE applications, the multi-similar-password model may ben-
efit password guessing attacks and password strength meters.
We leave these as future work.

Acknowledgment

The authors are grateful to the anonymous reviewers and
the shepherd, David Freeman, for their invaluable comments
that highly improve the completeness of the paper. We also
give our special thanks to Qianchen Gu, Zhixiong Zheng,
Jiahong Yang, Xiaoxi He and Jiahong Xie for their insightful
suggestions and invaluable help. This research is supported by
National Key R&D Program of China (2020YFB1805400),
National Natural Science Foundation of China (62072010),
and European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 952697 (ASSURED).

References

[1] Have i been pwned? https://haveibeenpwned.com.

[2] How do I update site passwords using auto change?
https://support.logmeininc.com/lastpass/he
lp/how-do-i-update-site-passwords-using-au
to-change.

[3] How do I view username, password, and note history
for sites? https://support.logmeininc.com/las
tpass/help/how-do-i-nbsp-view-username-pas
sword-and-note-history-for-sites.

[4] LastPass technical whitepaper. https:
//enterprise.lastpass.com/wp-content/upl
oads/LastPass-Technical-Whitepaper-3.pdf.

[5] 1Password security design, January 2019.
https://1password.com/files/1Password-
White-Paper.pdf.

[6] Issue 1930: lastpass: bypassing do_popupregister()
leaks credentials from previous site, October 2019.
https://bugs.chromium.org/p/project-zero/i
ssues/detail?id=1930.

[7] 1Password. 1password backups. https://support.
1password.com/backups/.

[8] Jeremiah Blocki, Ben Harsha, and Samson Zhou. On
the economics of offline password cracking. In IEEE
S&P 2018, pages 35–53.

[9] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan
Boneh. Kamouflage: Loss-resistant password manage-
ment. In ESORICS 2010, pages 286–302. Springer.

[10] Dan Boneh, Henry Corrigan-Gibbs, and Stuart
Schechter. Balloon hashing: A memory-hard function
providing provable protection against sequential attacks.
In ASIACRYPT 2016, pages 220–248. Springer.

[11] Joseph Bonneau and Stuart Schechter. Towards reliable
storage of 56-bit secrets in human memory. In USENIX
Security 2014, pages 607–623.

[12] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari
Juels, and Thomas Ristenpart. password typos and how
to correct them securely. In IEEE S&P 2016.

[13] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and
Thomas Ristenpart. Cracking-resistant password vaults
using natural language encoders. In IEEE S&P 2015,
pages 481–498.

[14] Haibo Cheng, Zhixiong Zheng, Wenting Li, Ping Wang,
and Chao-Hsien Chu. Probability model transforming
encoders against encoding attacks. In USENIX Security
2019, pages 1573–1590.

17

https://haveibeenpwned.com
https://support.logmeininc.com/lastpass/help/how-do-i-update-site-passwords-using-auto-change
https://support.logmeininc.com/lastpass/help/how-do-i-update-site-passwords-using-auto-change
https://support.logmeininc.com/lastpass/help/how-do-i-update-site-passwords-using-auto-change
https://support.logmeininc.com/lastpass/help/how-do-i-nbsp-view-username-password-and-note-history-for-sites
https://support.logmeininc.com/lastpass/help/how-do-i-nbsp-view-username-password-and-note-history-for-sites
https://support.logmeininc.com/lastpass/help/how-do-i-nbsp-view-username-password-and-note-history-for-sites
https://enterprise.lastpass.com/wp-content/uploads/LastPass-Technical-Whitepaper-3.pdf
https://enterprise.lastpass.com/wp-content/uploads/LastPass-Technical-Whitepaper-3.pdf
https://enterprise.lastpass.com/wp-content/uploads/LastPass-Technical-Whitepaper-3.pdf
https://1password.com/files/1Password-White-Paper.pdf
https://1password.com/files/1Password-White-Paper.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=1930
https://bugs.chromium.org/p/project-zero/issues/detail?id=1930
https://support.1password.com/backups/
https://support.1password.com/backups/

[15] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of pass-
word reuse. In NDSS 2014, pages 1–15.

[16] Dropbox. File version history overview.
https://help.dropbox.com/files-folders/r
estore-delete/version-history-overview.

[17] David Freeman, Sakshi Jain, Markus Dürmuth, Battista
Biggio, and Giorgio Giacinto. Who are you? a statistical
approach to measuring user authenticity. In NDSS 2016,
pages 1–15.

[18] Maximilian Golla, Benedict Beuscher, and Markus Dür-
muth. On the security of cracking-resistant password
vaults. In ACM CCS 2016, pages 1230–1241.

[19] Google. Protect your accounts from data
breaches with password checkup. https:
//security.googleblog.com/2019/02/protec
t-your-accounts-from-data.html.

[20] Amber Gott. LastPass security notification, March
2017. https://blog.lastpass.com/2017/03/impo
rtant-security-updates-for-our-users.html/.

[21] Paul A Grassi, James L Fenton, Elaine M Newton, Ray A
Perlner, Andrew R Regenscheid, William E Burr, and
Justin P Richer. Nist special publication 800-63b. Digi-
tal identity guidelines: Authentication and lifecycle man-
agement. Bericht, NIST, 2017.

[22] Joseph Jaeger, Thomas Ristenpart, and Qiang Tang.
Honey encryption beyond message recovery security.
In EUROCRYPT 2016, pages 758–788, 2016.

[23] Ari Juels and Thomas Ristenpart. Honey encryption:
Security beyond the brute-force bound. In EUROCRYPT
2014, pages 293–310. Springer.

[24] Ari Juels and Ronald L Rivest. Honeywords: Making
password-cracking detectable. In ACM CCS 2013, pages
145–160.

[25] Burt Kaliski. PKCS #5: Password-based cryptography
specification version 2.0. 2000.

[26] Mathias Karlsson. How I made LastPass give
me all your passwords, July 2016. https:
//labs.detectify.com/2016/07/27/how-i-
made-lastpass-give-me-all-your-passwords/.

[27] Jason Kincaid. Dropbox security bug made passwords
optional for four hours, June 2011. https://techcr
unch.com/2011/06/20/dropbox-security-bug-m
ade-passwords-optional-for-four-hours/.

[28] Eugene F Krause. Taxicab geometry: An adventure in
non-Euclidean geometry. Courier Corporation, 1986.

[29] Russell WF Lai, Christoph Egger, Manuel Reinert, Sher-
man SM Chow, Matteo Maffei, and Dominique Schröder.
Simple password-hardened encryption services. In
USENIX Security 2018, pages 1405–1421.

[30] Michael Levandowsky and David Winter. Distance be-
tween sets. Nature, 234(5323):34, 1971.

[31] Vladimir I Levenshtein. Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710, 1966.

[32] Dave Lewis. iCloud data breach: Hacking and celebrity
photos, September 2014. https://www.forbes.com
/sites/davelewis/2014/09/02/icloud-data-br
each-hacking-and-nude-celebrity-photos/.

[33] Yue Li, Haining Wang, and Kun Sun. A study of per-
sonal information in human-chosen passwords and its
security implications. In IEEE INFOCOM 2016, pages
1–9.

[34] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn
Song. The emperor’s new password manager: Security
analysis of web-based password managers. In USENIX
Security 2014, pages 465–479.

[35] Sanam Ghorbani Lyastani, Michael Schilling, Sascha
Fahl, Sven Bugiel, and Michael Backes. Better managed
than memorized? studying the impact of managers on
password strength and reuse. In USENIX Security 2018,
pages 203–220.

[36] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. A
study of probabilistic password models. In IEEE S&P
2014, pages 538–552.

[37] William Melicher, Blase Ur, Sean M Segreti, Saranga
Komanduri, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Fast, lean, and accurate: Modeling pass-
word guessability using neural networks. In USENIX
Security 2016, pages 175–191.

[38] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas
Ristenpart. Beyond credential stuffing: Password simi-
larity models using neural networks. In IEEE S&P 2019,
pages 814–831.

[39] Dario Pasquini, Ankit Gangwal, Giuseppe Ateniese,
Massimo Bernaschi, and Mauro Conti. Improving pass-
word guessing via representation learning. In IEEE S&P
2021, pages 265–282.

[40] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. Why people (don’t)
use password managers effectively. In SOUPS 2019,
pages 319–338.

18

https://help.dropbox.com/files-folders/restore-delete/version-history-overview
https://help.dropbox.com/files-folders/restore-delete/version-history-overview
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://blog.lastpass.com/2017/03/important-security-updates-for-our-users.html/
https://blog.lastpass.com/2017/03/important-security-updates-for-our-users.html/
https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-your-passwords/
https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-your-passwords/
https://labs.detectify.com/2016/07/27/how-i-made-lastpass-give-me-all-your-passwords/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/

[41] Colin Percival. Stronger key derivation via sequential
memory-hard functions. Self-published, pages 1–16,
2009.

[42] Benny Pinkas and Tomas Sander. Securing passwords
against dictionary attacks. In ACM CCS 2002, pages
161–170.

[43] Niels Provos and David Mazieres. A future-adaptable
password scheme. In USENIX ATC 1999, pages 81–91.

[44] Joe Siegrist. LastPass security notification, May
2011. https://blog.lastpass.com/2011/05/last
pass-security-notification.html/.

[45] Joe Siegrist. LastPass hacked – identified early & re-
solved, July 2015. https://blog.lastpass.com/20
15/06/lastpass-security-notice.html/.

[46] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen,
and Collin Jackson. Password managers: Attacks and
defenses. In USENIX Security 2014, pages 449–464.

[47] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
et al. Protecting accounts from credential stuffing with
password breach alerting. In USENIX Security 2019,
pages 1556–1571.

[48] Karen Turner. Hacked dropbox login data of 68 million
users is now for sale on the dark web, September 2016.
https://www.washingtonpost.com/news/the-sw
itch/wp/2016/09/07/hacked-dropbox-data-of-
68-million-users-is-now-or-sale-on-the-dar
k-web/.

[49] Rafael Veras, Christopher Collins, and Julie Thorpe. On
the semantic patterns of passwords and their security
impact. In NDSS 2014, pages 1–16.

[50] Ding Wang, Haibo Cheng, Ping Wang, Jeff Yan, and
Xinyi Huang. A security analysis of honeywords. In
NDSS 2018, pages 1–15.

[51] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and
Xinyi Huang. Targeted online password guessing: An
underestimated threat. In ACM CCS 2016, pages 1242–
1254.

[52] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and
Bill Glodek. Password cracking using probabilistic
context-free grammars. In IEEE S&P 2009, pages 391–
405.

[53] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair
Grant. Password memorability and security: Empirical
results. IEEE Secur. Priv., 2(5):25–31, 2004.

[54] Peilin Zhao and Steven CH Hoi. Cost-sensitive online
active learning with application to malicious URL de-
tection. In ACM SIGKDD 2013, pages 919–927.

A Our Single-Similar-Password Model and Its
Conditional Encoder

Current single-similar-password models. Wang et al. [51]
propose the first single-similar-password model for target
password guessing attacks, which exploits a leaked password
of a user to guess its another password. Their model char-
acterizes several password-reuse habits, including head or
tail modification, capitalization, and leet. Unfortunately, the
habits over password reuse cannot be distinctly identified.
For example, “Password” can be generated by capitalizing
the first character from the string “password”, or it can be
generated by modifying the first letter from the same string.
This benefits password guessing attacks but is not suitable for
HE-based honey vaults. Note that to resist encoding attacks,
the encoder of the model needs to parse all generating paths,
which yields exponential time complexity. Pal et al. [38] and
Pasquini et al. [39] also propose two models, the password-
to-path model (pass2path) [38] and the context Wasserstein
autoencoder (CWAE) [39], respectively. These two models
suffer from the same issue—heavy time complexity.

Our design. For simplicity, we only consider the most pop-
ular reuse habit, i.e., head or tail modifications. Specifically,
in our model, the new password pwnew can be generated from
an old one pwold in the following ways:

1. Direct reuse, i.e., pwnew = pwold.
2. Modify the characters in the tail of pwold. The modifi-

cation operations include deleting, adding and deleting-
then-adding. For example, given pwold = “password!”,
pwnew may be “password” (deleting the last charac-
ter “!”), “password!*” (adding a character “*”), or
“password*@” (deleting “!” and then adding “*@”).

3. Modify the characters in the head of pwold with the same
modification operations as above.

4. Modify the head characters and then the tail characters.
In addition, we find that users prefer to directly reuse pass-

words (i.e., without any modifications) if they already have
many passwords. This is intuitive, due to the memory limi-
tation of humans. Therefore, the probability of direct reuse
increases as the number of old passwords increases. However,
current models [38, 51] only use a static probability for direct
reuse, and therefore are not suitable for our construction of
the multi-similar-password model. To address this issue, we
set an adaptive probability for direct reuse and quantify the
probability based on the real-world vault dataset, Pastebin.
We find that the proportion of the same password pairs (i.e.,
direct reuse) in the similar password pairs varies little with
vault size. Assuming the proportion is a constant (denoted as

19

https://blog.lastpass.com/2011/05/lastpass-security-notification.html/
https://blog.lastpass.com/2011/05/lastpass-security-notification.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of-68-million-users-is-now-or-sale-on-the-dark-web/

α) independent of vault size (i.e., for different vault sizes, an
arbitrary similar pair is a same pair with a constant probability
α), we have that the probability of direct reuse is

i×α

i×α+1−α
,

where i is the number of previous passwords (i.e. pwnew is
the i+ 1-th password). When training, we use the average
proportion in the training set for α. Except this probability
of direct reuse, other probabilities (e.g. those of modifying
characters) are simply counted from the training dataset.

To show the details of character modification in our model,
we give an example with “password!” and “password@1”
as the old and new passwords. Clearly, “password@1” is
generated from “password!” by deleting “!” and adding
“@1”. Then PrSSPM(password@1 | password!)=PrDR(False)
×PrM(Tail)PrT(Deleting-then-adding)PrTDN(1)PrTAN(2)×
PrTAC(@)PrTAC(1). Here, PrDR(False), PrM(Tail), and
PrT(Deleting-then-adding) are the probabilities of not direct
reuse, modifying tail, and deleting-then-adding tail characters,
respectively; PrTDN(1) and PrTAN(2) are the probabilities
of deleting 1 tail character and adding 2 tail characters,
respectively; PrTAC(@) and PrTAC(1) are the probabilities of
adding characters “@” and “1” to the tail, respectively.

Several details should be carefully considered in our model.
Let lold be the length of the old password pwold, lHD, lTD,
lHA, and lTA be the character numbers of head deleting, tail
deleting, head adding, and tail adding, respectively. Then,
the length of the new password pwnew is lnew = lold− lHD−
lTD + lHA + lTA and the longest common substring length
lLCSStr of pwold and pwnew is lold− lHD− lTD. Because 1

2 lold≤
lLCSStr ≤ 2lold, it holds that lHD ≤ 1

2 lold, lTD ≤ 1
2 lold − lHD,

lHA ≤ 2(lold− lHD− ltd), and lTA ≤ 2(lold− lHD− ltd)− lHA.
Therefore, when calculating PrHDN, PrTDN, PrHAN and PrTAN,
all invalid values in the tables should be excluded and mean-
while, the probabilities of the remaining values should be
normalized. Note this process is the same as the pruning
method [14]. As a result, a decoy seed can be always de-
coded to a valid vault. Furthermore, if at least one character
in the head (or tail) is deleted, then the first head-added (or
tail-added) character cannot be the same character as the old
one (but other added characters can be identical). This helps
us reduce the ambiguity of our model. Similar changes should
be applied to PrHAC and PrTAC.

With the above designs, our model significantly reduces
ambiguity but still cannot eliminate it. This is due to the non-
uniqueness of the longest common substring (note the same
longest common substrings on different positions are treated
as two different ones). For instance, the password “aaaaa”
can be modified to “aaaa” in two different ways: deleting
the first or the last character. In this case, the probability
PrSSPM(pwold | pwnew) is defined as the total probability of
all modifying methods.

Conditional encoder for our model. We use the method
proposed in Section 3.2 to convert this model to a conditional
encoder. As discussed above, the conditional encoder needs
to parse all the longest common substrings of two passwords.
With a generalized suffix tree, this operation can be done in
O(l1l2) time, where l1, l2 are the lengths of the two passwords,
respectively. We note that other operations of the encoder are
simple and fast. Thus, our conditional encoder is efficient for
real applications.

If one sets our model to characterize more transformation
rules of password reuse, then the resulting encoder will suffer
from time complexity like others [38, 39, 51]. This is the
reason why we prefer to keep our model simple.

B Conditional Encoder for Our Multi-Similar-
Password Model

In our multi-similar-password model, the new password
pwi+1 is generated by reusing pwi′ (1 ≤ i′ ≤ i) or a brand
new selection. This means a valid generating path has the
form (g,r1,r2, . . .), where g represents the generating path: i′

for reusing pwi′ and 0 for otherwise. Note that: if g = 0, then
(rk)k must be a generating path in the single-password model;
if g = i′, then (rk)k must be a generating path in the single-
similar-password model under the condition of pwi′ . Using
the model-to-encoder transformation proposed in Section 3.2,
we can construct the following conditional encoder for our
multi-similar-password model.

To encode pwi+1 with i given old passwords (pwi′)
i
i′=1, the

encoder works as
1. Calculate 1− f (i)

i PrSSPM(pwi+1 | pwi′) for 1≤ i′ ≤ i and
f (i)PrSPM(pwi+1).

2. According to the above probabilities, choose a generat-
ing path of pwi+1. If the generating path s is modifying
pwi′ , set gi = i′, otherwise, set gi = 0.

3. Encode gi by the IS-DTE for the distribution of gi (the
probability is f (i) for 0 and 1− f (i)

i for 1 to i).
4. If gi = 0, encode pwi+1 (the remaining rules in gener-

ating path s) by the encoder (done by Cheng et al.’s
transformation [14]) for our single-password model, oth-
erwise, encode pwi+1 by the conditional encoder (made
by our extended transformation) for our single-similar-
password model with the given old password pwgi .

5. Concatenate these seeds, pad the concatenation to a fixed-
length seed with random bits, and output the seed.

C Leakage Detection Mechanisms

Leakage detection for honey vaults. Our mechanism, mak-
ing good use of honeypot accounts, is “simple and natural”.
To implement this for a vault, the vault application needs:

1. Generate honeypot accounts, which should be indistin-
guishable from the real accounts by attackers and will not

20

be misused by the user. This generation can be done by a
well-designed algorithm or the user himself. Note by an
account, we here mean a triple consisting of a username,
a password, and a domain, e.g., (Alice07, 12345678, ya-
hoo.com).

2. Register these accounts on the corresponding websites
and store them in the (real) vault. The websites of hon-
eypot accounts should provide login reminders. Specifi-
cally, the user will be noticed if anyone attempts to log
in to these accounts. Many real-world websites, e.g.,
Google, satisfy this requirement. Note that the registra-
tion is carried out on the user’s device under his consent,
which does not violate the websites’ terms of service8. In
addition, these accounts may get disabled by the websites
due to inactivity. To keep the accounts active, the vault
applications need to log in to these accounts periodically
(on the user’s device).

3. Set up leakage reminders, which will be triggered if the
websites of honeypot accounts send any login reminders
(except those yielded by the application’s periodical lo-
gins). The vault applications can provide an online ser-
vice for the reminders. Specifically, the online service
monitors the login reminders from these websites, and
send a vault leakage reminder to the user if a login re-
minder occurs.

If the user gets this vault leakage reminder, he should
change all his passwords stored in the vault and the master
password immediately. Furthermore, he should never reuse
these passwords. Note some vault applications support auto-
matic update for the website passwords, e.g., LastPass [2],
which offers great convenience.

With the mechanism, the attacker who steals the honey
vault file will not distinguish the honeypot accounts. But to
verify the correctness of the decrypted vaults, the attacker will
try to the accounts stored in the vaults. Since the websites usu-
ally block the accounts with too many failed login attempts,
the attacker will log in to as many accounts as possible. There-
fore, the attacker provably logs in to honeypot accounts and
further a vault leakage reminder will be triggered.

The main challenge of the design is to generate plausible-
looking honeypot accounts, including choosing appropriate
websites, picking up usernames and generating passwords. A
straightforward way is to require users to generate honeypot
accounts on their own. But this compromises usability. In-
stead, we may design a generation algorithm for honeypot
accounts via the following considerations:

1. Websites. To prevent attackers from telling honeypot ac-
counts, the websites for honeypot accounts should look
as “normal” as those for real accounts. A potential way is
to choose websites according to their popularity. Specifi-
cally, given a list of website candidates (providing login

8The registration may violate Facebook’s terms of service, because Face-
book prohibits the registration with fake personal information or multiple
registrations from one user.

reminders), the generation algorithm can choose one
with a probability that is proportional to its user number.
In this way, a more popular website (with more users)
has a greater probability to be chosen for honeypot ac-
counts. Intuitively, the choice seems to be made by a real
user (human).
When a user visits a honeypot-account website, he may
misuse the account (e.g., via the auto-fill or auto-login
function provided by the vault applications), and further
trigger a false alarm of the vault file leakage. To prevent
the misuse, the algorithm can choose the websites where
the user rarely visits for his honeypot accounts (note
that these websites may still be popular and have many
other visitors). Furthermore, the logo and domain of the
website can be attached to the leakage reminder, so that
the user can check if the reminder is falsely triggered by
himself. For instance, the notice may be in the form: “If
you just logged in Yahoo as Alice07, please ignore this
notice.”

2. Usernames. The usernames of honeypot accounts should
look like those of the user’s real accounts. Otherwise,
attackers may tell the honeypot accounts from real ones.
To satisfy this requirement, the algorithm can directly
reuse the usernames of real accounts in the vault.

3. Passwords. The passwords of honeypot accounts should
look consistent with other passwords in the vault. A po-
tential generation method is to sample a password from
our multi-similar-password model with the passwords of
real accounts.

Another consideration we should take into the detection
design is to avoid false alarms of vault file leakages. An
attacker who does not steal the vault file may intentionally
launch denial-of-service (DoS) attacks to trigger false alarms.
Specifically, the attacker may know the user’s real username
(usually is the username for honeypot accounts) and then
try to log in on many websites with this username. Note
that if the attacker encounters a honeypot account, the login
attempt will trigger a login reminder, and further a false alarm
of leakages. Then the user will be requested to change all
the passwords in the vault. Fortunately, the attacker has to
pay a high price to succeed, since there are a considerable
amount of websites that need to be tried online. In addition,
this attack may trigger malicious login reminders for real
accounts. When the reminders occur, the DoS attack can be
reliably noticeable.

Password breach alerts. Password breaches provide attack-
ers side information of password vaults and enable them to
offline distinguish real and decoy vaults. This is an important
and practical threat for honey vaults, but is not considered in
previous researches [13, 14, 18]. Fortunately, we can leverage
the leakage detection mechanism for honey vaults and exist-
ing alert mechanisms for password breaches to address this
threat.

21

Some websites may leverage security mechanisms (e.g.,
honeywords [24]) to detect the leakage of password files and
actively notice users. In addition, several real-world services,
e.g, HaveIBeenPwned [1] and Google [19, 47], have been
deployed to monitor the password breaches, and further pro-
vide breach alerts for password vault applications. Using the
password breach alerts, the vault applications can identify
the leakage of passwords stored in a vault. If a password is
detected to be leaked, the user should change it along with
all other similar passwords (note the user should not reuse
these passwords ever again). Then the vault application needs
to fully (not incrementally) update the vault and erase all
backups containing these passwords.

In this way, we can effectively prevent an attacker from
stealing both a vault file and a password in the vault:

1. If the password is leaked first, the user may get an alert of
the password breach. Then he will change the password
and other similar passwords, fully (not incrementally)
update the vault and erase all the backups containing
these passwords. Therefore, the attacker who steals the
updated vault later cannot offline distinguish the real and
decoy vaults.

2. If the vault file is leaked first, the user also may get a
reminder. Then he will change all passwords in the vault
and the master password. Hence, the leaked vault file is
useless to the attacker who gets a password in it later.

This method may not completely prevent an attacker from
stealing both the vault and password, but it significantly re-
duces the probability of this happening to mitigate the threat.

Malicious website detection. Malicious websites may be
built by attackers to steal passwords from users, which may
bring the same threat for honey vaults as password breaches.
A malicious website may pretend to be a normal one (e.g.,
Yahoo) to confuse users and steal their passwords. This may
be easily prevented by vault applications with the auto-fill
feature. But a malicious website also may entice users to
register on it and get their passwords.

Fortunately, we can use some existing mechanisms (e.g.,
malicious URL detection [54]) to prevent users from access-
ing malicious websites. Registering to malicious websites
should be prohibited. But if a user insists to do so, we recom-
mend him to use a randomly-generated password and store the
password in plaintext (without encryption). In this way, the
leakage of this password will bring no advantage to attackers
in distinguishing real and decoy vaults, and other passwords
will remain safe.

D Intersection Attacks Against Honey Vault
Schemes

We evaluate the security of honey vault schemes against inter-
section attacks with the real-world datasets.

Table 11: The performance for honey vault schemes under the
trivial intersection attack

Scheme r α

Chatterjee et al.’s [13] 0% 100%
Golla et al.’s [18] (static, 100) 0% 100%
Golla et al.’s [18] (adaptive, 100) 0% 100%
Ours 50% 50%

Table 12: The average rank r for single-password models
under the single-password attack

Model Chatterjee-
PCFG

Golla-
Markov

Weir-
PCFG

Neural
network

Best-
Markov1

r 18% 35% 33% 40% 50%
1 Best-Markov is the 5-order Markov model using distribution-based

normalization and Laplace smoothing with the pseudocount of 0.001.

Experimental settings. For each vault (with a size larger
than 2) in the vault dataset Pastebin, we randomly shuffle the
passwords in the vault and treat the last password as a new
added one. In this way, we get the old and new versions for
each (real) vault (here, the old version is the vault without
the last password). Then we use the honey vault schemes to
generate the decoys for these real vaults (note the decoys have
respective two versions as well). The rest of the experiment
settings are the same as those in Section 5.

Intersection attacks. We leverage a trivial intersection at-
tack for the evaluation. This attack only leverages the sim-
ilarity between the old and new versions of vaults, but not
considers the difference between the real vault distribution
and the vault model. For each candidate vault Vi with its old
and new versions V o

i ,V
n
i , the priority function pTIA(Vi) of the

trivial intersection attack is equal to 1 if V o
i is the same as V n

i
except for the last password, otherwise, 0. In other words, the
attack directly excludes these vaults of which two versions
are not similar.

Experimental results. As shown in Table 11, the intersec-
tion attack can directly tell the real vault with 100% accuracy
for all existing honey vault schemes. This is because the two
versions of each decoy vault are randomly generated and there
is only a very small probability that the two versions are simi-
lar. In contrast, our scheme generates the new version of each
decoy vault by adding a new password to the old version.
Therefore, it can resist the intersection attack.

E Evaluating Single-Password Models

To instantiate our construction with a good single-password
model, we evaluate the existing models with the single-
password attack.

Existing single-password models. We here evaluate
Chatterjee-PCFG [13], Golla-Markov [18], Weir-PCFG [52],

22

Chatterjee-PCFG
Golla-Markov
Weir-PCFG
Neural network
Best-Markov
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
ns

Figure 5: RCDFs for different models trained with RockYou.

Dodonew
000Webhost
CSDN
ClixSense
Yahoo
Myspace
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
ns

Figure 6: RCDFs for Best-Markov trained with different
datasets.

the neural network model [37], and Markov models [36] using
different methods. The neural network model proposed by
Melicher et al. [37] is the same as 10-order Markov model
except that the transition probabilities are calculated by recur-
rent neural networks. The performance of the model heavily
depends on its parameter settings. Here we use the default
settings in the example configuration on GitHub. Similar to
the neural network model, the performance of Markov models
relies on its normalization and smoothing methods. We note
that in the Markov models with distribution-based normal-
ization, we train independent Markov models for passwords
with different lengths, which is not considered in [36] but [18].
We employ this operation because it can make a significant
improvement on the performance of Markov models. So, we
only present the experiments with this operation.

Experimental settings. We randomly choose 50% pass-
words from RockYou as the training set for PMTEs and attacks,
while randomly selecting 104 passwords from the remaining
part of RockYou as real passwords. Apart from that, other
experimental settings are the same as those for honey vaults.

Experimental results. As shown in Fig. 5, Tables 13 and
12, the 5-order Markov models using distribution-based nor-
malization and Laplace smooth with pseudocount of 10−3

can guarantee the expected security, where the average rank
is 50%. We denote these models as Best-Markov. We also
achieve good performance for Best-Markov via using other
password datasets including Dodonew, 000Webhost, CSDN,
ClixSense, Yahoo, and Myspace. Note these datasets are exten-
sively used in password researches, e.g., [36,50,52]. As shown

Table 13: The average rank r for Markov model under the
single-password attack

Normalization End-symbol Distribution-based
Order 3 4 5 3 4 5

Ps
eu

do
co

un
t 100 31% 35% 39% 33% 37% 39%

10−1 30% 37% 43% 34% 38% 44%
10−2 31% 36% 44% 33% 40% 48%
10−3 32% 35% 42% 33% 39% 50%
10−4 30% 39% 45% 34% 42% 48%
10−5 32% 36% 46% 32% 42% 47%

Table 14: The average rank r for Best-Markov trained with
different datasets under the single-password attack

Dataset Dodonew 000Webhost CSDN ClixSense Yahoo Myspace
r 47% 48% 45% 47% 49% 50%

in Fig. 6 and Table 14, the average ranks of Best-Markov all
approach to the expected value (≈ 50%) and meanwhile, the
RCDFs are all close to the baseline. Due to the good perfor-
mance of Best-Markov, we will use it in our vault model.

F Evaluating by Password Policy Attack

Since a vault may contain multiple or even hundreds of pass-
words with different policies, the password policy attack may
be a serious threat to existing honey vault schemes. We origi-
nally planned to launch the password policy attack on the real
vault dataset. But we find some websites (e.g., Google) have
changed their policies, and some passwords in the real vaults
do not comply with the current password policies. Since we
do not know the old policies when the passwords were regis-
tered, we use artificially-made policies to evaluate the security
of honey vault schemes against the password policy attack.
Specifically, we define three types of password policies:

1. Password length is not less than n (n = 6,8). We denote
this policy as nL.

2. Password contains at least n (n= 2,3) types of characters
in lower-case letters, upper-case letters, digit numbers,
and special characters. We denote this policy as nC.

3. A combination of the above policies, denoted as n1Ln2C.
Table 15 shows the proportion of passwords complying

with the password policies in all passwords generated by
the single-password model of existing vault models [13, 18].
Informally, if one password in a vault has such a policy, then
the (policy) attack can exclude many decoys and only leave
this proportion of vaults for online verification. The stronger
the policy is, the more effective the password policy attack
presents. More interestingly, if several passwords have such
policies, the left proportion of the vaults is the product of
the proportion for each password. So for a vault of a large
size, the attacker probably can directly tell the real vault, i.e.,
completely breaking the honey vault schemes. Fortunately,
our vault model can adjust itself and ensure that all passwords

23

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(a) Our single-similar-password model

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(b) Pass2path model [38]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Rank

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(c) Context Wasserstein autoencoder [39]

KL divergence attack Single-password attack Password-similarity attack Hybrid attack Baseline (Randomly guessing)

Figure 7: RCDFs for our honey vault scheme using different single-similar-password models under attacks (with the best
performance similar meter)

Table 15: The proportion of passwords complying with the
password policy

Policy 6L 8L 2C 3C
Chatterjee-PCFG 91% 33% 23% 2%
Golla-Markov 95% 50% 49% 20%
Our scheme 100% 100% 100% 100%
Policy 6L2C 6L3C 8L2C 8L3C
Chatterjee-PCFG 23% 2% 11% 1%
Golla-Markov 48% 19% 30% 14%
Our scheme 100% 100% 100% 100%

generated by it comply with the policies.

G Evaluating Single-Similar-Password Models

To choose a single-similar-password model for our multi-
similar-password model, we evaluate two existing models,
pass2path [38] and CWAE [39] along with our simple model
(Appendix A) under our proposed attacks. We do not consider
Wang et al.’s model [51] because: 1) pass2path always outper-
forms this model on target password guessing [38]; 2) Wang
et al. do not open-source the code, which brings difficulty in
comparison.

Experimental settings. The settings are the same as those
in Section 5, except the following.

1. Training. We leverage pass2path and CWAE which are
trained by the authors and provided on GitHub. We do
not train these two models with the real dataset Pastebin,
because the dataset is too small for them and cannot
provide sufficient training. We note that our model is
simple and can be trained with a small-scale dataset.

2. Password-similarity features. Pass2path is training from
the password pairs (pw1, pw2) satisfying that the Leven-
shtein distance between pw1 and pw2 is not more than
5. So we use this feature as Feature M in the password-

Table 16: The average rank r for our honey vault scheme with
different single-similar-password models

Attack Ours
Password-

to-path
model [38]

Context
Wasserstein

autoencoder [39]
KL divergence 42% 52% 68%
Single password 48% 47% 42%
Password similarity (Levenshtein) 45% 24% 23%
Password similarity (LCS) 47% 31% 18%
Password similarity (Manhattan) 46% 23% 24%
Password similarity (Overlap) 43% 37% 22%
Hybrid (Levenshtein) 44% 26% 22%
Hybrid (LCS) 46% 28% 19%
Hybrid (Manhattan) 43% 24% 22%
Hybrid (Overlap) 42% 35% 17%

similarity attack. As for CWAE, we still use Feature
LCSStr as Feature M. The rest of the attack settings are
the same as those for our model in Section 5.

3. Encoder. As we discussed in Appendix A, pass2path and
CWAE yield heavy time complexity in encoding. There-
fore, we do not implement their encoders. Instead, we
directly sample passwords from these models to generate
decoy vaults in the experiments.

Experimental results. As shown in Fig. 7 and Table 16,
our simple design performs the best: the average rank r is
not less than 42% under any attacks. This means no attacks
can achieve more than 58% accuracy in distinguishing real
and decoy vaults. Both pass2path and CWAE cannot generate
plausible-looking decoys: targeting pass2path, the password
similarity attack with the Manhattan meter achieves 77% ac-
curacy; targeting CWAE, the hybrid attack with the Overlap
meter achieves 83% accuracy. Since our simple model per-
forms well on decoy generating, it may also perform well on
password guessing. We leave this as future work.

24

	Introduction
	Our Contributions

	Background and Related Work
	Traditional Solutions to Offline Guessing
	Honey Encryption
	HE-based Honey Vault Schemes
	Model-to-encoder transformation

	Our Incrementally Updateable Scheme
	Our New Construction
	Conditional Probability Model Transforming Encoder
	Incrementally Updateable Encoder
	Multi-Similar-Password Model
	Leakage Detection
	Implementation and Performance

	Attacks Against Honey Vault Schemes
	Attacker Model
	Theoretically Optimal Strategy
	Practical Attacks
	More Attacks to Adaptive Encoders

	Security Evaluation under Our Attacks
	Security Metrics
	Experimental Settings
	Experimental Results
	Further Discussion

	Conclusion and Future Work
	Our Single-Similar-Password Model and Its Conditional Encoder
	Conditional Encoder for Our Multi-Similar-Password Model
	Leakage Detection Mechanisms
	Intersection Attacks Against Honey Vault Schemes
	Evaluating Single-Password Models
	Evaluating by Password Policy Attack
	Evaluating Single-Similar-Password Models

