Probability Model Transforming Encoders Against Encoding Attacks

Haibo Cheng¹, Zhixiong Zheng¹, Wenting Li¹, Ping Wang¹, Chao-Hsien Chu²

¹Peking University, ²Pennsylvania State University

August 16, 2019 @ USENIX Security

1/25

Probability Model Transforming Encoders Against Encoder

Password-based encryption

Password-based encryption (PBE)

Fundamental scheme for:

- O Authentication
 - PC, mobile phone, or Internet service.
- Incryption
 - Oisk encryption
 - FileVault on macOS
 - BitLocker on Windows
 - **6** File encryption
 - VeraCrypt/TrueCrypt
 - 🚺 Zip

Enter password	×
Enter password for the encrypted file	_
in archive	
Enter password	
×	
Show password	
Use for all archives	
Organize passwords	
OK Cancel Help	

Password-based encryption (PBE)

The key is password, different from cryptographic key

- I Human-generated and memorable.
- ② Easy to be cracked.

Traditional Countermeasures:

- Increase the complexity of decryption
 - Salt.
 - Use special password-hashing functions: iterated hash functions, memory-hard functions. Disadvantage: increasing legitimate users' cost by the same factor.
- Ø Harden passwords with other factors
 - Biometric factor: fingerprint, iris, keystroke.
 - Device: smart card, smart phone, server.

Disadvantage: worse on deployability; the encrypted message cannot be recovered, if the factors get stolen or lost.

Honey encryption (HE)

A novel countermeasure proposed on EUROCRYPT'14

- Idea: generate decoy messages for incorrect passwords/keys to confuse attackers.
- Advantage: not increase the users' cost; not decline on deployability; significantly improve security.
- Method: distribution transforming encoder (DTE)
 - Encrypt: Encode then encrypt
 - First encode the message M to a seed S by DTE.
 - Then encrypt S by traditional PBE.
 - Decrypt: Decrypt then decode
 - With the right key K, yield the right S and M.
 - With a wrong key K', yield a randomly wrong S' and M'.

Figure 1: Honey encryption

イロト 不得下 イヨト イヨト

Distribution transforming encoder (DTE)

IS-DTE

- Proposed on EUROCRYPT'14 [1]
- For messages following simple distributions, e.g., uniform distributions, normal distributions.
- Method: inverse sampling.

Probability model transforming encoder (PMTE)

Great challenge to design DTEs for messages following intricate distributions

Existing PMTEs

- Two for password vaults: NoCrack (S&P'15) [2] and Golla et al.'s scheme (CCS'16) [3].
- One for genomic data protection: GenoGuard (Huang et al., S&P'15) [4].

Gap in existing research

The security analysis is not comprehensive

Our work

Two kinds of attacks

Outline

Our work

A generic designing method for PMTEs

Probability Model Transforming Encoders Against Encoder August 16, 2019 @ USENIX Security

イロト イポト イヨト イヨト

э

Attacker model

Attacker's ability

- Steal the storage file, i.e., ciphertext.
- In the PBE (encrypt/decrypt algorithm) and DTE/PMTE
- Enumerate all keys offline.
- In Know some statistics about real messages (not needed for encoding attacks).
- (For password vault) can perform a certain number of online verifications.

Attacker's goal

Distinguish the real message from a large number of decoy messages.

Attacker model

Attacker's process

- Inumerate all keys and yield a large number of messages (only one of them is real).
- O To distinguish the real one
 - For password vaults, sort the messages by some means and verify them online.
 - Ø For genomic data, just guess one offline.

Formalization: Sort the message in decreasing order of a weight function p. The weight p(M) usually reflects the probability that M is real.

Security

- Only focus on the security of PMTEs: the distinguishability between the real and decoy messages.
- On not consider the security of keys: the strength of passwords.

э

イロト 不得下 イヨト イヨト

Attacker model

Security metrics

- The rank of the real messages in relative form i.e., real numbers in [0,1].
 (E.g., in 1000 decoy messages, 30 rank in front of the real one, then the rank is 0.3.)
- **2** The rank cumulative distribution function F(x).
- **(a)** The average rank \overline{r} .

$$\overline{r} = 1 - \int_0^1 F(x) \, dx$$

O Accuracy α, the probability that the attacker distinguishes the real one between one real message and one decoy message.

$$\alpha = 1 - \overline{r} = \int_0^1 F(x) \, dx$$

Attack against GenoGuard

Genomic data

- Single nucleotide variant (SNV) sequence represented by a string with {0,1,2} alphabet.
- **2** Real dataset: 165 individuals' SNV sequences of length 1000.
- Occoy data: generated by decoding random seeds with the PMTE.

Our attack: A classifier PCA+SVM

Principal component analysis (PCA) for dimensionality reduction (from 1000 to 10). Support vector machine (SVM) for classification.

- Training:
 - Randomly pick half of real SNV sequences and generate the same number of decoy SNV sequences for training.
 - O Train PCA model and SVM in turn.

Attack against GenoGuard

$\mathsf{Test}/\mathsf{Attack}$

- Use the rest real sequences for test.
- Calculate the ranks of real sequences and other metrics (generate 999 decoy sequence for each real one).
- The weight $p_{PCA+SVM}$ for a sequence is the SVM-estimated probability that the dimension-reduced sequence is real.

Experimental results

Even for recombination model, 76.54% accuracy and 47.88% (F(0)) individuals' real sequences rank first.

Figure 2: The rank cumulative distribution function

PMTE/Probability model	\overline{r}	α	F(0)	$F^{-1}(1)$
Uniform distribution model	0.00%	100.00%	100.00%	0.00%
Public LD model	0.00%	100.00%	99.39%	0.20%
0-th order Markov model	0.00%	100.00%	100.00%	0.00%
1-st order Markov model	0.01%	99.99%	99.39%	1.30%
2-nd order Markov model	0.53%	99.47%	55.76%	23.92%
Recombination model	23.46%	76.54%	47.88%	99.90%

イロト イポト イヨト イヨ

Probability Model Transforming Encoders Against Encode August 16, 2019 @ USENIX Security

Attacks against password vault schemes

Password vault

- Store one user's multiple passwords on different websites/services.
- One of the passwords are usually weak and similar.

NoCrack

- $\textcircled{0} \label{eq:product} \mathsf{PCFG} \mbox{ model: characterize the single password distribution} \\ A \mbox{ password "password1": } S \rightarrow \mathtt{WD}, \mathtt{W} \rightarrow \mathtt{password}, \mbox{ } D \rightarrow 1 \\ \end{aligned}$
- Sub-grammar: characterize the password similarity A vault V = (password, password1), its sub-grammar SG = {S → W, S → WD, W → password, D → 1}
- Encode
 - **1** Parse V's sub-grammar SG, encode SG;
 - **2** Encode each password in V based on SG;
 - Concatenate all seeds and output the concatenation.

Attacks against NoCrack

Defects in NoCrack

A sub-grammar for a real vault is parsed from the vault, but a sub-grammar for a decoy vault is generated randomly. This leads:

- There definitely exists no unused rule in sub-grammars for real vaults, but may exist for decoy vaults. Feature UR.
- On the provide the second s

Attack	\overline{r}	α	F(0)	$F^{-1}(1)$
Feature UR attack	15.14%	84.86%	0.36%	42.24%
Feature DR attack	26.96%	73.04%	0.00%	54.95%

Golla et al.'s scheme Similar defects.

Encoding attacks

Encoding attacks

These feature attacks *do no need any statistics about the real distribution and only exploit the DTE/PMTE*. We name such attacks *encoding attacks*.

Questions:

- Why these PMTEs cannot resist encoding attacks?
- Is there other features?
- What is the principle for encoding attacks?

To answer the questions:

- First formalize the probability models into a unified form.
- Idea: A model usually designs a series of generating rules to assign messages probabilities. The probability of a message is the probability that it is generated by the rules.

Generative probability model

Definition

A generative probability model (GPM) is a 5-tuple $(\mathcal{M}, \mathcal{R}, \mathcal{RS}, G, P)$:

- **(**) \mathcal{M} is the message space,
- **2** \mathcal{R} is the set of generating rules,
- ${f 0}\ {\cal RS} \subset {\cal R}^*$ is the set of valid sequences of generating rules,
- **③** G is the generating function mapping a sequence in \mathcal{RS} to a message in \mathcal{M} ,
- **(**) P is the probability density function on \mathcal{RS} .

Here $\mathcal{M}, \mathcal{R}, \mathcal{RS}$ are finite sets, *G* is surjective. Then the probability density function *P* on \mathcal{M} is given as

$$P(M) = \sum_{RS \in G^{-1}(M)} P(RS).$$
 (1)

If for every message, there only exists one generating sequence (i.e., G is bijective), then the GPM is *unambiguous*, and otherwise, it is *ambiguous*.

Formalization

PCFG model

- **(**) A generating rule is a production rule in PCFG.
- A generating sequence is a (leftmost) derivation of a string.
- $P(r_i | r_1 r_2 \dots r_{i-1}) = P(r_i).$

Sub-grammar

A generating sequence of the sub-grammar {S \rightarrow D, S \rightarrow W, D \rightarrow 123456, W \rightarrow password} is (#S = 2, S \rightarrow D, S \rightarrow W, #D = 1, D \rightarrow 123456, #W = 1, W \rightarrow password).

Other models

Similar formalizations, e.g., Markov models, a generating rule is a character.

- 34

イロト 不得下 イヨト イヨト

Generating graph

Generating graph: represent a GPM visually

- A directed acyclic graph with a single source.
- An edge represents a generating rule.
- A sink represents a message.
- A path from the source to a sink represents a generating sequence, called generating path.

The principle of encoding attacks/Defects in existing password vault schemes

- The ambiguous probability models.
- But only choose a deterministic path when encoding.

Figure 3: Generating graph for a PCFG model

イロト イポト イヨト イヨト

Generic encoding attacks

Generic encoding attacks

- Weak encoding attack: exclude these seeds whose paths cannot be chosen when encoding.
- **2** Strong encoding attack: sort the rest seeds by $\frac{1}{P(RS)}$.

Attack	\overline{r}	α	F(0)	$F^{-1}(1)$
KL divergence attack	11.83%	88.17%	1.82%	98.80%
Feature UR attack	15.14%	84.86%	0.36%	42.24%
Feature DR attack	26.96%	73.04%	0.00%	54.95%
Weak encoding attack	8.74%	91.26%	0.36%	19.42%
Strong encoding attack	1.44%	98.56%	70.55%	15.02%

A generic method for designing PMTEs

Conditional DTEs

IS-CDTE: For each condition X, construct **IS-DTE**_X according to the conditional distribution P(M|X).

Our **IS-PMTE**

- **()** Encode M:
 - Parse all generating sequence $G^{-1}(M)$, and choose one RS with its probability.
 - Encode each rule r_i in RS to S_i by using **IS-CDTE** on condition $(r_1, r_2, \ldots, r_{i-1})$.
 - Concatenate S_i, pad the concatenation to a fixed length, and output the result S.

The security of our IS-PMTEs

We prove

Our IS-PMTE is indistinguishable from the corresponding GPM.

Experimental results under the strong encoding attack

Figure 5: Original PMTEs Figure 6: Our IS-PMTEs

Probability model	Accuracy α		
Frobability model	Original	Our	
Chatterjee et al.'s GPM	98.56%	52.56%	
Golla et al.'s static GPM	99.52%	46.38%	
Golla et al.'s adaptive GPM	99.42%	45.75%	

イロト イポト イヨト イヨ

Future work

Design probability models

Probability Model Transforming Encoders Against Encoder August 16, 2019 @ USENIX Security

イロト 不得下 イヨト イヨト

Q&A

Thank you

Probability Model Transforming Encoders Against Encoder August 16, 2019 @ USENIX Security

25 / 25

3

イロト イポト イヨト イヨト